10 research outputs found

    HER2 and p95HER2 differentially regulate miRNA expression in MCF-7 breast cancer cells and downregulate MYB proteins through miR-221/222 and miR-503

    Get PDF
    Mecanismes de la malaltia; Càncer de mamaMecanismos de la enfermedad; Cáncer de mamaDisease Mechanisms; Breast CancerThe HER2 oncogene and its truncated form p95HER2 play central roles in breast cancer. Here, we show that although HER2 and p95HER2 generally elicit qualitatively similar changes in miRNA profile in MCF-7 breast cancer cells, a subset of changes are distinct and p95HER2 shifts the miRNA profile towards the basal breast cancer subtype. High-throughput miRNA profiling was carried out 15, 36 and 60 h after HER2 or p95HER2 expression and central hits validated by RT-qPCR. miRNAs strongly regulated by p95HER2 yet not by HER2, included miR-221, miR-222, miR-503, miR-29a, miR-149, miR-196 and miR-361. Estrogen receptor-α (ESR1) expression was essentially ablated by p95HER2 expression, in a manner recapitulated by miR-221/-222 mimics. c-Myb family transcription factors MYB and MYBL1, but not MYBL2, were downregulated by p95HER2 and by miR-503 or miR-221/-222 mimics. MYBL1 3′UTR inhibition by miR-221/222 was lost by deletion of a single putative miR-221/222 binding sites. p95HER2 expression, or knockdown of either MYB protein, elicited upregulation of tissue inhibitor of matrix metalloprotease-2 (TIMP2). miR-221/222 and -503 mimics increased, and TIMP2 knockdown decreased, cell migration and invasion. A similar pathway was operational in T47D- and SKBr-3 cells. This work reveals important differences between HER2- and p95HER2- mediated miRNA changes in breast cancer cells, provides novel mechanistic insight into regulation of MYB family transcription factors by p95HER2, and points to a role for a miR-221/222– MYB family–TIMP2 axis in regulation of motility in breast cancer cells.This work was supported by the Danish Council for Independent Research (grants no. 12-126942 and 12-127290 to SFP), by the Hartmann foundation (SFP), Fondation Juchum (SFP), Kirsten og Freddy Johansens Fond (SFP), the Breast Cancer Research Foundation (BCRF-17-008) (JA), Instituto de Salud Carlos III (PI16/00253) (JA) and the Harboe foundation (SFP). Katrine Franklin Mark is gratefully acknowledged for excellent technical assistance. We are grateful to Pascal Pineau from Institut Pasteur, France for the MYBL1 3′UTR/psiCHECK2 construct

    The target antigen determines the mechanism of acquired resistance to T cell-based therapies

    Get PDF
    Cancer; Antigen; ResistanceCáncer; Antígeno; ResistenciaCàncer; Antigen; ResistènciaDespite the revolution of immunotherapy in cancer treatment, patients eventually progress due to the emergence of resistance. In this scenario, the selection of the tumor antigen can be decisive in the success of the clinical response. T cell bispecific antibodies (TCBs) are engineered molecules that include binding sites to the T cell receptor and to a tumor antigen. Using gastric CEA+/HER2+ MKN45 cells and TCBs directed against CEA or HER2, we show that the mechanism of resistance to a TCB is dependent on the tumor antigen. Acquired resistant models to a high-affinity-CEA-targeted TCB exhibit a reduction of CEA levels due to transcriptional silencing, which is reversible upon 5-AZA treatment. In contrast, a HER2-TCB resistant model maintains HER2 levels and exhibit a disruption of the interferon-gamma signaling. These results will help in the design of combinatorial strategies to increase the efficacy of cancer immunotherapies and to anticipate and overcome resistances.This work was supported by Asociación Española Contra el Cancer (AECC), Breast Cancer Research Foundation (BCRF-21-008), and Instituto de Salud Carlos III (PI19/01181). A.M.S. was funded by the Spanish Government (PFIS FI20/00188). B.M. was funded by a fellowship from PERIS (Departament de Salut, Generalitat de Catalunya). M.R.A. was funded by Agency for Management of University and Research Grants (AGAUR, 2022 FI_B2 00080). P.O.R. was funded by the BBVA. E.J.A. was funded by the AECC (POSTD211413AREN). VHIO acknowledges the Cellex Foundation for providing research facilities and equipment, the Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) from the Institute of Health Carlos III (ISCIII), and the Department of Health (Generalitat de Catalunya, SLT008/18/00198 SLT008/18/00205) for their support on this research. The authors acknowledge financial support from the State Agency for Research (Agencia Estatal de Investigación) (CEX2020-001024-S/AEI/10.13039/501100011033) and for the Cancer Immunology and Immunotherapy (CAIMI-2) program funded by BBVA Foundation. We would like to remark the funding from B.M PERIS (Spain). The authors thank Dr. Anne Freimoser-Grundschober and Roche for helping provide the TCBs. The graphical abstract was created with BioRender.com

    Therapy-Induced Senescence Enhances the Efficacy of HER2-Targeted Antibody–Drug Conjugates in Breast Cancer

    Get PDF
    Eficàcia; Conjugats de fàrmacs; Càncer de mamaEficacia; Conjugados de medicamentos; Cáncer de mamaEfficacy; Drug conjugates; Breast cancerAntibody–drug conjugates (ADC) are antineoplastic agents recently introduced into the antitumor arsenal. T-DM1, a trastuzumab-based ADC that relies on lysosomal processing to release the payload, is approved for HER2-positive breast cancer. Next-generation ADCs targeting HER2, such as [vic-]trastuzumab duocarmazine (SYD985), bear linkers cleavable by lysosomal proteases and membrane-permeable drugs, mediating a bystander effect by which neighboring antigen-negative cells are eliminated. Many antitumor therapies, like DNA-damaging agents or CDK4/6 inhibitors, can induce senescence, a cellular state characterized by stable cell-cycle arrest. Another hallmark of cellular senescence is the enlargement of the lysosomal compartment. Given the relevance of the lysosome to the mechanism of action of ADCs, we hypothesized that therapies that induce senescence would potentiate the efficacy of HER2-targeting ADCs. Treatment with the DNA-damaging agent doxorubicin and CDK4/6 inhibitor induced lysosomal enlargement and senescence in several breast cancer cell lines. While senescence-inducing drugs did not increase the cytotoxic effect of ADCs on target cells, the bystander effect was enhanced when HER2-negative cells were cocultured with HER2-low cells. Knockdown experiments demonstrated the importance of cathepsin B in the enhanced bystander effect, suggesting that cathepsin B mediates linker cleavage. In breast cancer patient-derived xenografts, a combination treatment of CDK4/6 inhibitor and SYD985 showed improved antitumor effects over either treatment alone. These data support the strategy of combining next-generation ADCs targeting HER2 with senescence-inducing therapies for tumors with heterogenous and low HER2 expression. Significance: Combining ADCs against HER2-positive breast cancers with therapies that induce cellular senescence may improve their therapeutic efficacy by facilitating a bystander effect against antigen-negative tumor cells.This work was supported by Breast Cancer Research Foundation (BCRF-20-008), Instituto de Salud Carlos III (project reference numbers AC15/00062, CB16/12/00449 and PI19/01181), the EC under the framework of the ERA-NET TRANSCAN-2 initiative co-financed by FEDER, Fundación Mutua Madrileña and Asociación Española Contra el Cáncer. S. Duro-Sánchez is supported by the Spanish Ministerio de Universidades by the grant Formación de Profesorado Universitario (FPU20/05388). A. Esteve-Codina is funded by ISCIII /MINECO (PT17/0009/0019) and co-funded by FEDER. The authors acknowledge Alyson MacInnes for reviewing and editing the article

    Regulation of NFAT5 by signaling pathways involved in osmotic stress responses and cell growth

    Get PDF
    NFAT5 is the main regulator of an osmoprotective gene program that is switched on by osmotic stress. Hypertonicity causes a harmful increase in the intracellular concentration of inorganic ions and NFAT5-regulated genes allow the accumulation of organic osmolytes and chaperones in order to protect the cells. However, little is known about the physiopathologic tonicity thresholds that trigger NFAT5 transcriptional activity, and which signaling pathways are involved, in primary cells. We have studied the regulation of NFAT5 transcriptional activity in several types of primary cells obtained from transgenic mice carrying the 9xNFAT-Luc reporter developed by the Molkentin laboratory. Our results indicate that NFAT5 is able to respond to pathological tonicity levels in primary cells and it requires a combination of signaling mediators, some of which are more relevant in specific cell types

    Regulació del factor de transcripció NFAT5 per les quinases WNK1, SPAK i OSR1 i cerca de quinases activadores de la pròpia WNK1 en resposta a estrés osmòtic

    No full text
    Estudi elaborat a partir dâuna estada a la School of Life Sciences de la University of Dundee, Gran Bretanya, entre gener i març del 2007.L'estrès osmòtic causa rà pidament l'activació de la quinasa WNK1, que fosforila i activa a continuació les quinases SPAK i OSR1, que alhora regulen canals i transportadors dâions preexistents a la membrana celâ¢lular. El factor de transcripció NFAT5 és el principal regulador de la resposta celâ¢lular transcripcional secundà ria a hipertonicitat i sâha descrit que les quinases p38, Fyn, PKA, ERK/MEK i ATM estan involucrades en la seva regulació post-traduccional. No obstant, com que la funció dâaquestes quinases no explica totalment els mecanismes d'activació de NFAT5, sâha estudiat si lâactivitat transcripcional de NFAT5 pot estar regulada per WNK1, SPAK o OSR1. Així doncs, es va observar que lâactivitat dâun reporter dependent de NFAT5 no es veu afectada per la presència de cap de les quinases anteriors, en la seva forma wild-type o dominant negatiu. Dâaltra banda, es va estudiar quin domini de WNK1 és necessari per a que pugui respondre a hipertonicitat i quines quinases poden estar involucrades en la fosforilació de la serina 382 de WNK1. En conclusió, les dades obtingudes apunten que lâactivació de WNK1 en resposta a estrès osmòtic requereix la seva fosforilació en la serina 382 per quinases upstream com PAK2 o RSK i que també és necessari un dels seus dominis coiled-coil, almenys els aminoà cids 558 i 561. Aquests processos, però, semblen ser independents de lâactivació de NFAT5 en resposta a hipertonicitat. ââReport for the scientific sojourn at the School of Life Sciences at the University of Dundee, United Kingdom, from january to march 2007. WNK1 kinase is rapidly activated by osmotic stress and then phosphorylates and activates the kinases SPAK and OSR1, which regulate channels and ion transporters that already exist in the cellular membrane. The transcription factor NFAT5 is the main regulator of the secondary transcriptional response to hypertonicity and it has been described that the kinases p38, Fyn, PKA, ERK/MEK and ATM are involved in its post-translational regulation. However, the function of these kinases does not completely explain the mechanisms that activate NFAT5. Thus, it has been studyied whether NFAT5 transcriptional activity could be regulated by WNK1, SPAK or OSR1. Therefore, it was observed that the activity of an NFAT5-dependent reporter is not affected by the presence of any of that kinases, wild-type or dominant negative forms. On the other hand, it has been studied which domain of WNK1 is necessary to respond to hypertonicity itself and which kinases might be involved in the phosphorylation of the serine 382 of WNK1. In conclusion, the data indicate that WNK1 activation in response to osmotic stress requires its phosphorylation in the serine 382 by upstream kinases such as PAK2 and RSK, and that one of WNK1 coiled-coil domains is also necessary, at least the aminoacids 558 and 561. However, these processes seem to be independent of the activation of NFAT5 triggered by hypertonicity

    Analysis of the transcriptional activity of endogenous NFAT5 in primary cells using transgenic NFAT-luciferase reporter mice

    No full text
    Background: The transcription factor NFAT5/TonEBP regulates the response of mammalian cells to hypertonicity. However, little is known about the physiopathologic tonicity thresholds that trigger its transcriptional activity in primary cells. Wilkins et al. recently developed a transgenic mouse carrying a luciferase reporter (9xNFAT-Luc) driven by a cluster of NFAT sites, that was activated by calcineurin-dependent NFATc proteins. Since the NFAT site of this reporter was very similar to an optimal NFAT5 site, we tested whether this reporter could detect the activation of NFAT5 in transgenic cells./nResults: The 9xNFAT-Luc reporter was activated by hypertonicity in an NFAT5-dependent manner in different types of non-transformed transgenic cells: lymphocytes, macrophages and fibroblasts. Activation of this reporter by the phorbol ester PMA plus ionomycin was independent of NFAT5 and mediated by NFATc proteins. Transcriptional activation of NFAT5 in T lymphocytes was detected at hypertonic conditions of 360–380 mOsm/kg (isotonic conditions being 300 mOsm/kg) and strongly induced at 400 mOsm/kg. Such levels have been recorded in plasma in patients with osmoregulatory disorders and in mice deficient in aquaporins and vasopressin receptor. The hypertonicity threshold required to activate NFAT5 was higher in bone marrow-derived macrophages (430 mOsm/kg) and embryonic fibroblasts (480 mOsm/kg). Activation of the 9xNFAT-Luc reporter by hypertonicity in lymphocytes was insensitive to the ERK inhibitor PD98059, partially inhibited by the PI3-kinase inhibitor wortmannin (0.5 μM) and the PKA inhibitor H89, and substantially downregulated by p38 inhibitors (SB203580 and SB202190) and by inhibition of PI3-kinase-related kinases with 25 μM LY294002. Sensitivity of the reporter to FK506 varied among cell types and was greater in primary T cells than in fibroblasts and macrophages./nConclusion: Our results indicate that NFAT5 is a sensitive responder to pathologic increases in extracellular tonicity in T lymphocytes. Activation of NFAT5 by hypertonicity in lymphocytes was mediated by a combination of signaling pathways that differed from those required in other cell types. We propose that the 9xNFAT-Luc transgenic mouse model might be useful to study the physiopathological regulation of both NFAT5 and NFATc factors in primary cells

    Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin

    No full text
    Although stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response. Our results showed that mammalian cells exposed to moderate hypertonicity maintained active mTOR, which was required to sustain their cell size and proliferative capacity. Moreover, mTOR regulated the induction of diverse osmostress response genes, including targets of the tonicity-responsive transcription factor NFAT5 as well as NFAT5-independent genes. Genes sensitive to mTOR-included regulators of stress responses, growth and proliferation. Among them, we identified REDD1 and REDD2, which had been previously characterized as mTOR inhibitors in other stress contexts. We observed that mTOR facilitated transcription-permissive conditions for several osmoresponsive genes by enhancing histone H4 acetylation and the recruitment of RNA polymerase II. Altogether, these results reveal a previously unappreciated role of mTOR in regulating transcriptional mechanisms that control gene expression during cellular stress responses.Ministry of Science and Innovation of Spain (Grant numbers BFU2008-01070, SAF2011-24268) and Distinció de la Generalitat de Catalunya per a la Promoció de la Recerca Universitària (to J.A.); the Ramón y Cajal and I3 Researcher Programmes and Ministry of Science and Innovation of Spain (Grant numbers SAF2006-04913, SAF2009-08066) and Marie Curie International Reintegration Programme (Grant number MCIRG 516308 to C.L-R.); Fundació la Marató TV3 (Grant numbers 030230/31, 080730), Spanish Ministry of Health (Fondo de Investigación Sanitaria, Red HERACLES) (Grant number RD06/ 0009/1005. FEDER) and Generalitat de Catalunya (Grant numbers SGR-00478, 2009 SGR 601) for research in the laboratories of C. L-R. and J.A.; FPI predoctoral fellowship of the Ministry of Science and Innovation of Spain (to M.C.O.); FI predoctoral fellowship from the Generalitat de Catalunya (to B.M.); FI-IQUC predoctoral fellowship from the Generalitat de Catalunya (to K.D.-E.). Funding for open access charge: Ministry of Science and Innovation of Spain (Grant numbers BFU2008-01070, SAF2011-24268 to J.A.)

    The Second Generation Antibody-Drug Conjugate SYD985 Overcomes Resistances to T-DM1

    Get PDF
    T-DM1; Conjugat anticòs-fàrmac; Càncer de mamaT-DM1; Conjugado anticuerpo-fármaco; Cáncer de mamaT-DM1; Antibody-drug conjugate; Breast cancerTrastuzumab-emtansine (T-DM1) is an antibody-drug conjugate (ADC) approved for the treatment of HER2 (human epidermal growth factor receptor 2)-positive breast cancer. T-DM1 consists of trastuzumab covalently linked to the cytotoxic maytansinoid DM1 via a non-cleavable linker. Despite its efficacy, primary or acquired resistance frequently develops, particularly in advanced stages of the disease. Second generation ADCs targeting HER2 are meant to supersede T-DM1 by using a cleavable linker and a more potent payload with a different mechanism of action. To determine the effect of one of these novel ADCs, SYD985, on tumors resistant to T-DM1, we developed several patient-derived models of resistance to T-DM1. Characterization of these models showed that previously described mechanisms—HER2 downmodulation, impairment of lysosomal function and upregulation of drug efflux pumps—account for the resistances observed, arguing that mechanisms of resistance to T-DM1 are limited, and most of them have already been described. Importantly, SYD985 was effective in these models, showing that the resistance to first generation ADCs can be overcome with an improved design.This work was supported by Breast Cancer Research Foundation (BCRF-19-08), Fundación Mutua Madrileña, Instituto de Salud Carlos III Project Reference number AC15/00062 and the EC under the framework of the ERA-NET TRANSCAN-2 initiative co-financed by FEDER, Instituto de Salud Carlos III (CB16/12/00449 and PI19/01181), and Asociación Española Contra el Cáncer. BM is supported by a fellowship from PERIS (Departament de Salut, Generalitat de Catalunya). JZ is supported by a fellowship from China Scholarship Council (CSC). JA is supported by Institució Catalana de Recerca i Estudis Avançats

    The target antigen determines the mechanism of acquired resistance to T cell-based therapies

    No full text
    Despite the revolution of immunotherapy in cancer treatment, patients eventually progress due to the emergence of resistance. In this scenario, the selection of the tumor antigen can be decisive in the success of the clinical response. T cell bispecific antibodies (TCBs) are engineered molecules that include binding sites to the T cell receptor and to a tumor antigen. Using gastric CEA+/HER2+ MKN45 cells and TCBs directed against CEA or HER2, we show that the mechanism of resistance to a TCB is dependent on the tumor antigen. Acquired resistant models to a high-affinity-CEA-targeted TCB exhibit a reduction of CEA levels due to transcriptional silencing, which is reversible upon 5-AZA treatment. In contrast, a HER2-TCB resistant model maintains HER2 levels and exhibit a disruption of the interferon-gamma signaling. These results will help in the design of combinatorial strategies to increase the efficacy of cancer immunotherapies and to anticipate and overcome resistances

    mTOR inhibition and T-DM1 in HER2-positive breast cancer

    Get PDF
    In patients with trastuzumab-resistant HER2-positive breast cancer, the combination of everolimus (mTORC1 inhibitor) with trastuzumab failed to show a clinically significant benefit. However, the combination of mTOR inhibition and the antibody-drug conjugate (ADC) trastuzumab-emtansine (T-DM1) remains unexplored. We tested T-DM1 plus everolimus in a broad panel of HER2-positive breast cancer cell lines. The combination was superior to T-DM1 alone in four cell lines (HCC1954, SKBR3, EFM192A, and MDA-MB-36) and in two cultures from primary tumor cells derived from HER2-positive patient-derived xenografts (PDX), but not in BT474 cells. In the trastuzumab-resistant HCC1954 cell line, we characterized the effects of the combination using TAK-228 (mTORC1 and -2 inhibitor) and knockdown of the different mTOR complex components. T-DM1 did not affect mTOR downstream signaling nor induct autophagy. Importantly, mTOR inhibition increased intracellular T-DM1 levels, leading to increased lysosomal accumulation of the compound. The increased efficacy of mTOR inhibition plus T-DM1 was abrogated by lysosome inhibitors (chloroquine and bafilomycin A1). Our experiments suggest that BT474 are less sensitive to T-DM1 due to lack of optimal lysosomal processing and intrinsic resistance to the DM1 moiety. Finally, we performed several in vivo experiments that corroborated the superior activity of T-DM1 and everolimus in HCC1954 and PDX-derived mouse models. In summary, everolimus in combination with T-DM1 showed strong antitumor effects in HER2-positive breast cancer, both in vitro and in vivo. This effect might be related, at least partially, to mTOR-dependent lysosomal processing of T-DM1, a finding that might apply to other ADCs that require lysosomal processing.This work was supported by ISCIII (CIBERONC CB16/12/00481, CB16/12/00241, PI18/00382, PI18/00006, PI18/01219), Generalitat de Catalunya (2017 SGR 507). MINECO through gBFU2015-71371-R grant and the CRIS Cancer Foundation supported work in AP lab. D. Casadevall was supported by ISCIII (Rio Hortega Research Contract CM16/00023 and Juan Rodés Research Contract JR18/00003). F.J. Sánchez-Martín and S. Menéndez were supported by Department de Salut Generalitat de Catalunya (PERIS SLT002/16/00008 and PERIS SLT006/17/00040). M. Qin received financial support from the China Scholarship Council (CSC) for her doctoral fellowship. Work carried out in our laboratories receives support from the European Community through the Regional Development Funding Program (FEDER)
    corecore