282 research outputs found
Acute effect of antiseizure drugs on background oscillations in Scn1aA1783V Dravet syndrome mouse model
Dravet syndrome (Dravet) is a rare and severe form of developmental epileptic encephalopathy. Antiseizure medications (ASMs) for Dravet patients include valproic acid (VA) or clobazam (CLB), with or without stiripentol (STP), while sodium channel blockers like carbamazepine (CBZ) or lamotrigine (LTG) are contraindicated. In addition to their effect on epileptic phenotypes, ASMs were shown to modify the properties of background neuronal activity. Nevertheless, little is known about these background properties alterations in Dravet. Here, utilizing Dravet mice (DS, Scn1aA1783V/WT), we tested the acute effect of several ASMs on background electrocorticography (ECoG) activity and frequency of interictal spikes. Compared to wild-type mice, background ECoG activity in DS mice had lower power and reduced phase coherence, which was not corrected by any of the tested ASMs. However, acute administration of Dravet-recommended drugs, VA, CLB, or a combination of CLB + STP, caused, in most mice, a reduction in the frequency of interictal spikes, alongside an increase in the relative contribution of the beta frequency band. Conversely, CBZ and LTG increased the frequency of interictal spikes, with no effect on background spectral properties. Moreover, we uncovered a correlation between the reduction in interictal spike frequency, the drug-induced effect on the power of background activity, and a spectral shift toward higher frequency bands. Together, these data provide a comprehensive analysis of the effect of selected ASMs on the properties of background neuronal oscillations, and highlight a possible correlation between their effect on epilepsy and background activity
Thinking about Later Life: Insights from the Capability Approach
A major criticism of mainstream gerontological frameworks is the inability of such frameworks to appreciate and incorporate issues of diversity and difference in engaging with experiences of aging. Given the prevailing socially structured nature of inequalities, such differences matter greatly in shaping experiences, as well as social constructions, of aging. I argue that Amartya Sen’s capability approach (2009) potentially offers gerontological scholars a broad conceptual framework that places at its core consideration of human beings (their values) and centrality of human diversity. As well as identifying these key features of the capability approach, I discuss and demonstrate their relevance to thinking about old age and aging. I maintain that in the context of complex and emerging identities in later life that shape and are shaped by shifting people-place and people-people relationships, Sen’s capability approach offers significant possibilities for gerontological research
Genomic insights into the evolutionary origin of Myxozoa within Cnidaria
The Myxozoa comprise over 2,000 species of microscopic obligate parasites that use both invertebrate and vertebrate hosts as part of their life cycle. Although the evolutionary origin of myxozoans has been elusive, a close relationship with cnidarians, a group that includes corals, sea anemones, jellyfish, and hydroids, is supported by some phylogenetic studies and the observation that the distinctive myxozoan structure, the polar capsule, is remarkably similar to the stinging structures (nematocysts) in cnidarians. To gain insight into the extreme evolutionary transition from a free-living cnidarian to a microscopic endoparasite, we analyzed genomic and transcriptomic assemblies from two distantly related myxozoan species, Kudoa iwatai and Myxobolus cerebralis, and compared these to the transcriptome and genome of the less reduced cnidarian parasite, Polypodium hydriforme. A phylogenomic analysis, using for the first time to our knowledge, a taxonomic sampling that represents the breadth of myxozoan diversity, including four newly generated myxozoan assemblies, confirms that myxozoans are cnidarians and are a sister taxon to P. hydriforme. Estimations of genome size reveal that myxozoans have one of the smallest reported animal genomes. Gene enrichment analyses show depletion of expressed genes in categories related to development, cell differentiation, and cell–cell communication. In addition, a search for candidate genes indicates that myxozoans lack key elements of signaling pathways and transcriptional factors important for multicellular development. Our results suggest that the degeneration of the myxozoan body plan from a free-living cnidarian to a microscopic parasitic cnidarian was accompanied by extreme reduction in genome size and gene content
Heat-induced seizures, premature mortality, and hyperactivity in a novel Scn1a nonsense model for Dravet syndrome
Dravet syndrome (Dravet) is a severe congenital developmental genetic epilepsy caused by de novo mutations in the SCN1A gene. Nonsense mutations are found in ∼20% of the patients, and the R613X mutation was identified in multiple patients. Here we characterized the epileptic and non-epileptic phenotypes of a novel preclinical Dravet mouse model harboring the R613X nonsense Scn1a mutation. Scn1aWT/R613X mice, on a mixed C57BL/6J:129S1/SvImJ background, exhibited spontaneous seizures, susceptibility to heat-induced seizures, and premature mortality, recapitulating the core epileptic phenotypes of Dravet. In addition, these mice, available as an open-access model, demonstrated increased locomotor activity in the open-field test, modeling some non-epileptic Dravet-associated phenotypes. Conversely, Scn1aWT/R613X mice, on the pure 129S1/SvImJ background, had a normal life span and were easy to breed. Homozygous Scn1aR613X/R613X mice (pure 129S1/SvImJ background) died before P16. Our molecular analyses of hippocampal and cortical expression demonstrated that the premature stop codon induced by the R613X mutation reduced Scn1a mRNA and NaV1.1 protein levels to ∼50% in heterozygous Scn1aWT/R613X mice (on either genetic background), with marginal expression in homozygous Scn1aR613X/R613X mice. Together, we introduce a novel Dravet model carrying the R613X Scn1a nonsense mutation that can be used to study the molecular and neuronal basis of Dravet, as well as the development of new therapies associated with SCN1A nonsense mutations in Dravet
Methicillin-Resistant Staphylococcus aureus and Community-Acquired Pneumonia: An Evolving Relationship
Micromechanical Properties of Injection-Molded Starch–Wood Particle Composites
The micromechanical properties of injection molded starch–wood particle composites were investigated as a function of particle content and humidity conditions.
The composite materials were characterized by scanning electron microscopy and X-ray diffraction methods. The microhardness
of the composites was shown to increase notably with the concentration of the wood particles. In addition,creep behavior under the indenter and temperature dependence
were evaluated in terms of the independent contribution of the starch matrix and the wood microparticles to the hardness value. The influence of drying time on the density
and weight uptake of the injection-molded composites was highlighted. The results revealed the role of the mechanism of water evaporation, showing that the dependence of water uptake and temperature was greater for the starch–wood composites than for the pure starch sample. Experiments performed during the drying process at 70°C indicated that
the wood in the starch composites did not prevent water loss from the samples.Peer reviewe
Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.
Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage
Rubinstein-Taybi syndrome with scoliosis
<p>Abstract</p> <p>Study Design</p> <p>Case report.</p> <p>Objective</p> <p>The authors present the case of a 14-year-old boy with Rubinstein-Taybi syndrome (RSTS) presenting scoliosis.</p> <p>Summary of Background Data</p> <p>There have been no reports on surgery for RSTS presenting scoliosis.</p> <p>Methods</p> <p>The patient was referred to our hospital for evaluation of a progressive spinal curvature. A standing anteroposterior spine radiograph at presentation to our hospital revealed an 84-degree right thoracic curve from T6 to T12, along with a 63-degree left lumbar compensatory curve from T12 to L4. We planned a two-staged surgery and decided to fuse from T4 to L4. The first operation was front-back surgery because of the rigidity of the right thoracic curve. The second operation of lumbar anterior discectomy and fusion was arranged 9 months after the first surgery to prevent the crankshaft phenomenon due to his natural course of adolescent growth. To avoid respiratory complications, the patient was put on a respirator in the ICU for several days after both surgeries.</p> <p>Results</p> <p>Full-length spine radiographs after the first surgery revealed no instrumentation failure and showed that the right thoracic curve was corrected to 31 degrees and the left lumbar curve was corrected to 34 degrees. No postoperative complications occurred after both surgeries.</p> <p>Conclusions</p> <p>We succeeded in treating the patient without complications. Full-length spine standing radiographs at one year after the second operation demonstrated a stable bony arthrodesis with no loss of initial correction.</p
Synaptic dysregulation in a mouse model of GRIN2D developmental and epileptic encephalopathy
Gain-of-function (GoF) variants in the GRIN2D gene, encoding the GluN2D subunit of the N-methyl-D-aspartate receptor (NMDAR), cause a severe developmental and epileptic encephalopathy (DEE), characterized by intractable seizures, hypotonia, and neurodevelopmental delay. We generated mice carrying the GoF V664I variant, orthologous to V667I, which is present in ∼25% of GRIN2D-DEE patients. Heterozygous mutant mice demonstrate behavioral, neuroanatomical, and electrophysiological abnormalities. Lethal convulsive seizures are observed beginning at postnatal day 17. As adults, heterozygotes display abundant and prolonged runs of spike-wave discharges (SWD) that often persist for minutes. The SWD epochs consist of different populations, differentiated by frequency and association with time-locked behavioral arrest. V664I mutant neurons have enlarged presynaptic terminals and increased synaptic distance. Functional analysis reveals increased inhibitory synaptic activity without changes in NMDAR decay kinetics or presynaptic plasticity in CA1 neurons and analysis of hippocampal local field potentials show a 1.5-fold increase in evoked responses and a 1.7-fold increase in action potential generation. Notably, expression of V664I in GABAergic interneurons, but not excitatory forebrain neurons, is sufficient to recapitulate the severe electroclinical phenotype. Altogether our studies show that altered NMDAR function in inhibitory neurons plays a prominent role in DEE associated with GRIN2D gain-of-function variants and suggests that targeted genetic treatment may represent a path forward to successful therapeutic intervention
Transfer of SCN1A to the brain of adolescent mouse model of Dravet syndrome improves epileptic, motor, and behavioral manifestations
Dravet syndrome is a genetic encephalopathy characterized by severe epilepsy combined with motor, cognitive, and behavioral abnormalities. Current antiepileptic drugs achieve only partial control of seizures and provide little benefit on the patient’s neurological development. In >80% of cases, the disease is caused by haploinsufficiency of the SCN1A gene, which encodes the alpha subunit of the Nav1.1 voltage-gated sodium channel. Novel therapies aim to restore SCN1A expression in order to address all disease manifestations. We provide evidence that a high-capacity adenoviral vector harboring the 6-kb SCN1A cDNA is feasible and able to express functional Nav1.1 in neurons. In vivo, the best biodistribution was observed after intracerebral injection in basal ganglia, cerebellum, and prefrontal cortex. SCN1A A1783V knockin mice received the vector at 5 weeks of age, when most neurological alterations were present. Animals were protected from sudden death, and the epileptic phenotype was attenuated. Improvement of motor performance and interaction with the environment was observed. In contrast, hyperactivity persisted, and the impact on cognitive tests was variable (success in novel object recognition and failure in Morris water maze tests). These results provide proof of concept for gene supplementation in Dravet syndrome and indicate new directions for improvement
- …
