1,721 research outputs found
Self-harm in primary school-aged children: Prospective cohort study
Introduction
No prospective studies have examined the prevalence, antecedents or concurrent characteristics associated with self-harm in non-treatment-seeking primary school-aged children.
Methods
In this cohort study from Melbourne, Australia we assessed 1239 children annually from age
8–9 years (wave 1) to 11–12 years (wave 4) on a range of health, social, educational and
family measures. Past-year self-harm was assessed at wave 4. We estimated the prevalence of self-harm and used multivariable logistic regression to examine associations with
concurrent and antecedent factors.
Results
28 participants (3% of the 1059 with self-harm data; 18 girls [3%], 10 boys [2%]) reported
self-harm at age 11–12 years. Antecedent (waves 1–3) predictors of self-harm were: persistent symptoms of depression (sex-age-socioeconomic status adjusted odds ratio [aOR]:
7.8; 95% confidence intervals [CI] 2.6 to 24) or anxiety (aOR: 5.1; 95%CI 2.1 to 12), frequent
bullying victimisation (aOR: 24.6; 95%CI 3.8 to 158), and recent alcohol consumption (aOR:
2.9; 95%CI 1.2 to 7.1). Concurrent (wave 4) associations with self-harm were: having few
friends (aOR: 8.7; 95%CI 3.2 to 24), poor emotional control (aOR: 4.2; 95%CI 1.9 to 9.6),
antisocial behaviour (theft—aOR: 3.1; 95%CI 1.2 to 7.9; carrying a weapon—aOR: 6.9; 95%CI 3.1 to 15), and being in mid-puberty (aOR: 6.5; 95%CI 1.5 to 28) or late/post-puberty
(aOR: 14.4; 95%CI 2.9 to 70)
Selection-Driven Gene Loss in Bacteria
Gene loss by deletion is a common evolutionary process in bacteria, as exemplified by bacteria with small genomes that have evolved from bacteria with larger genomes by reductive processes. The driving force(s) for genome reduction remains unclear, and here we examined the hypothesis that gene loss is selected because carriage of superfluous genes confers a fitness cost to the bacterium. In the bacterium Salmonella enterica, we measured deletion rates at 11 chromosomal positions and the fitness effects of several spontaneous deletions. Deletion rates varied over 200-fold between different regions with the replication terminus region showing the highest rates. Approximately 25% of the examined deletions caused an increase in fitness under one or several growth conditions, and after serial passage of wild-type bacteria in rich medium for 1,000 generations we observed fixation of deletions that substantially increased bacterial fitness when reconstructed in a non-evolved bacterium. These results suggest that selection could be a significant driver of gene loss and reductive genome evolution
Testing for Network and Spatial Autocorrelation
Testing for dependence has been a well-established component of spatial
statistical analyses for decades. In particular, several popular test
statistics have desirable properties for testing for the presence of spatial
autocorrelation in continuous variables. In this paper we propose two
contributions to the literature on tests for autocorrelation. First, we propose
a new test for autocorrelation in categorical variables. While some methods
currently exist for assessing spatial autocorrelation in categorical variables,
the most popular method is unwieldy, somewhat ad hoc, and fails to provide
grounds for a single omnibus test. Second, we discuss the importance of testing
for autocorrelation in data sampled from the nodes of a network, motivated by
social network applications. We demonstrate that our proposed statistic for
categorical variables can both be used in the spatial and network setting
Maximal Spontaneous Photon Emission and Energy Loss from Free Electrons
Free electron radiation such as Cerenkov, Smith--Purcell, and transition
radiation can be greatly affected by structured optical environments, as has
been demonstrated in a variety of polaritonic, photonic-crystal, and
metamaterial systems. However, the amount of radiation that can ultimately be
extracted from free electrons near an arbitrary material structure has remained
elusive. Here we derive a fundamental upper limit to the spontaneous photon
emission and energy loss of free electrons, regardless of geometry, which
illuminates the effects of material properties and electron velocities. We
obtain experimental evidence for our theory with quantitative measurements of
Smith--Purcell radiation. Our framework allows us to make two predictions. One
is a new regime of radiation operation---at subwavelength separations, slower
(nonrelativistic) electrons can achieve stronger radiation than fast
(relativistic) electrons. The second is a divergence of the emission
probability in the limit of lossless materials. We further reveal that such
divergences can be approached by coupling free electrons to photonic bound
states in the continuum (BICs). Our findings suggest that compact and efficient
free-electron radiation sources from microwaves to the soft X-ray regime may be
achievable without requiring ultrahigh accelerating voltages.Comment: 7 pages, 4 figure
Stress related epigenetic changes may explain opportunistic success in biological invasions in Antipode mussels
Different environmental factors could induce epigenetic changes, which are likely involved in the biological invasion process. Some of these factors are driven by humans as, for example, the pollution and deliberate or accidental introductions and others are due to natural conditions such as salinity. In this study, we have analysed the relationship between different stress factors: time in the new location, pollution and salinity with the methylation changes that could be involved in the invasive species tolerance to new environments. For this purpose, we have analysed two different mussels’ species, reciprocally introduced in antipode areas: the Mediterranean blue mussel Mytilus galloprovincialis and the New Zealand pygmy mussel Xenostrobus securis, widely recognized invaders outside their native distribution ranges. The demetylathion was higher in more stressed population, supporting the idea of epigenetic is involved in plasticity process. These results can open a new management protocols, using the epigenetic signals as potential pollution monitoring tool. We could use these epigenetic marks to recognise the invasive status in a population and determine potential biopollutants
Magnesium intake and colorectal cancer risk in the Netherlands Cohort Study
Energy-adjusted magnesium intake was nonsignificantly inversely related to risk of colorectal cancer (n=2328) in the Netherlands Cohort Study on Diet and Cancer that started in 1986 (n=58 279 men and 62 573 women). Statistically significant inverse trends in risk were observed in overweight subjects for colon and proximal colon cancer across increasing quintiles of magnesium uptake (P-trend, 0.05 and 0.02, respectively). Although an overall protective effect was not afforded, our results suggest an effect of magnesium in overweight subjects, possibly through decreasing insulin resistance
Extracellular Hsp72 concentration relates to a minimum endogenous criteria during acute exercise-heat exposure
Extracellular heat-shock protein 72 (eHsp72) concentration increases during exercise-heat stress when conditions elicit physiological strain. Differences in severity of environmental and exercise stimuli have elicited varied response to stress. The present study aimed to quantify the extent of increased eHsp72 with increased exogenous heat stress, and determine related endogenous markers of strain in an exercise-heat model. Ten males cycled for 90 min at 50% O2peak in three conditions (TEMP, 20°C/63% RH; HOT, 30.2°C/51%RH; VHOT, 40.0°C/37%RH). Plasma was analysed for eHsp72 pre, immediately post and 24-h post each trial utilising a commercially available ELISA. Increased eHsp72 concentration was observed post VHOT trial (+172.4%) (P<0.05), but not TEMP (-1.9%) or HOT (+25.7%) conditions. eHsp72 returned to baseline values within 24hrs in all conditions. Changes were observed in rectal temperature (Trec), rate of Trec increase, area under the curve for Trec of 38.5°C and 39.0°C, duration Trec ≥ 38.5°C and ≥ 39.0°C, and change in muscle temperature, between VHOT, and TEMP and HOT, but not between TEMP and HOT. Each condition also elicited significantly increasing physiological strain, described by sweat rate, heart rate, physiological strain index, rating of perceived exertion and thermal sensation. Stepwise multiple regression reported rate of Trec increase and change in Trec to be predictors of increased eHsp72 concentration. Data suggests eHsp72 concentration increases once systemic temperature and sympathetic activity exceeds a minimum endogenous criteria elicited during VHOT conditions and is likely to be modulated by large, rapid changes in core temperature
Amino Acid Usage Is Asymmetrically Biased in AT- and GC-Rich Microbial Genomes.
INTRODUCTION: Genomic base composition ranges from less than 25% AT to more than 85% AT in prokaryotes. Since only a small fraction of prokaryotic genomes is not protein coding even a minor change in genomic base composition will induce profound protein changes. We examined how amino acid and codon frequencies were distributed in over 2000 microbial genomes and how these distributions were affected by base compositional changes. In addition, we wanted to know how genome-wide amino acid usage was biased in the different genomes and how changes to base composition and mutations affected this bias. To carry this out, we used a Generalized Additive Mixed-effects Model (GAMM) to explore non-linear associations and strong data dependences in closely related microbes; principal component analysis (PCA) was used to examine genomic amino acid- and codon frequencies, while the concept of relative entropy was used to analyze genomic mutation rates. RESULTS: We found that genomic amino acid frequencies carried a stronger phylogenetic signal than codon frequencies, but that this signal was weak compared to that of genomic %AT. Further, in contrast to codon usage bias (CUB), amino acid usage bias (AAUB) was differently distributed in AT- and GC-rich genomes in the sense that AT-rich genomes did not prefer specific amino acids over others to the same extent as GC-rich genomes. AAUB was also associated with relative entropy; genomes with low AAUB contained more random mutations as a consequence of relaxed purifying selection than genomes with higher AAUB. CONCLUSION: Genomic base composition has a substantial effect on both amino acid- and codon frequencies in bacterial genomes. While phylogeny influenced amino acid usage more in GC-rich genomes, AT-content was driving amino acid usage in AT-rich genomes. We found the GAMM model to be an excellent tool to analyze the genomic data used in this study
- …