13,426 research outputs found

    Investigations in space-related molecular biology

    Get PDF
    Improved instrumentation and preparation techniques for high resolution, high voltage cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens are reported. Computer correlated ultrastructural and biochemical work on hydrated and dried cell membranes and related biological systems provided information on membrane organization, ice crystal formation and ordered water, RNA virus linked to cancer, lunar rock samples, and organometallic superconducting compounds. Apollo 11, 12, 14, and 15 specimens were analyze

    Galaxy Clusters Selected via the Sunyaev–Zel'dovich Effect in the SPTpol 100-square-degree Survey

    Get PDF
    We present a catalog of galaxy cluster candidates detected in 100 square degrees surveyed with the SPTpol receiver on the South Pole Telescope. The catalog contains 89 candidates detected with a signal-to-noise ratio greater than 4.6. The candidates are selected using the Sunyaev–Zel'dovich effect at 95 and 150 GHz. Using both space- and ground-based optical and infrared telescopes, we have confirmed 81 candidates as galaxy clusters. We use these follow-up images and archival images to estimate photometric redshifts for 66 galaxy clusters and spectroscopic observations to obtain redshifts for 13 systems. An additional two galaxy clusters are confirmed using the overdensity of near-infrared galaxies only and are presented without redshifts. We find that 15 candidates (18% of the total sample) are at redshift z ≥ 1.0, with a maximum confirmed redshift of z_(max) = 1.38±0.10. We expect this catalog to contain every galaxy cluster with M_(500c) > 2.6×10¹⁴M⊙h⁻¹₇₀ and z > 0.25 in the survey area. The mass threshold is approximately constant above z = 0.25, and the complete catalog has a median mass of approximately M_(500c) > 2.7×10¹⁴M⊙h⁻¹₇₀. Compared to previous SPT works, the increased depth of the millimeter-wave data (11.2 and 6.5 μK-arcmin at 95 and 150 GHz, respectively) makes it possible to find more galaxy clusters at high redshift and lower mass

    RadioAstron probes the ultra-fine spatial structure in the H2_2O maser emission in the star forming region W49N

    Full text link
    H2_2O maser emission associated with the massive star formation region W49N were observed with the Space-VLBI mission RadioAstron. The procedure for processing of the maser spectral line data obtained in the RadioAstron observations is described. Ultra-fine spatial structures in the maser emission were detected on space-ground baselines of up to 9.6 Earth diameters. The correlated flux densities of these features range from 0.1% to 0.6% of the total flux density. These low values of correlated flux density are probably due to turbulence either in the maser itself or in the interstellar medium.Comment: Accepted for publication in Advances in Space Researc

    Voter models on weighted networks

    Get PDF
    We study the dynamics of the voter and Moran processes running on top of complex network substrates where each edge has a weight depending on the degree of the nodes it connects. For each elementary dynamical step the first node is chosen at random and the second is selected with probability proportional to the weight of the connecting edge. We present a heterogeneous mean-field approach allowing to identify conservation laws and to calculate exit probabilities along with consensus times. In the specific case when the weight is given by the product of nodes' degree raised to a power theta, we derive a rich phase-diagram, with the consensus time exhibiting various scaling laws depending on theta and on the exponent of the degree distribution gamma. Numerical simulations give very good agreement for small values of |theta|. An additional analytical treatment (heterogeneous pair approximation) improves the agreement with numerics, but the theoretical understanding of the behavior in the limit of large |theta| remains an open challenge.Comment: 21 double-spaced pages, 6 figure

    A Symposium on Taxation.

    Get PDF

    Toward a New Distance to the Active Galaxy NGC 4258: II. Centripetal Accelerations and Investigation of Spiral Structure

    Full text link
    We report measurements of centripetal accelerations of maser spectral components of NGC 4258 for 51 epochs spanning 1994 to 2004. This is the second paper of a series, in which the goal is determination of a new geometric maser distance to NGC 4258 accurate to possibly ~3%. We measure accelerations using a formal analysis method that involves simultaneous decomposition of maser spectra for all epochs into multiple, Gaussian components. Components are coupled between epochs by linear drifts (accelerations) from their centroid velocities at a reference epoch. For high-velocity emission, accelerations lie in the range -0.7 to +0.7 km/s/yr indicating an origin within 13 degrees of the disk midline (the perpendicular to the line-of-sight to the black hole). Comparison of high-velocity emission projected positions in VLBI images, with those derived from acceleration data, provides evidence that masers trace real gas dynamics. High-velocity emission accelerations do not support a model of trailing shocks associated with spiral arms in the disk. However, we find strengthened evidence for spatial periodicity in high-velocity emission, of wavelength 0.75 mas. This supports suggestions of spiral structure due to density waves in the nuclear accretion disk of an active galaxy. Accelerations of low-velocity (systemic) emission lie in the range 7.7 to 8.9 km/s/yr, consistent with emission originating from a concavity where the thin, warped disk is tangent to the line-of-sight. A trend in accelerations of low-velocity emission as a function of Doppler velocity may be associated with disk geometry and orientation, or with the presence of spiral structure.Comment: Accepted to ApJ, 48 pages and 20 figure
    corecore