2,446 research outputs found

    Alien Registration- Moran, Robert G. (Milo, Piscataquis County)

    Get PDF
    https://digitalmaine.com/alien_docs/8456/thumbnail.jp

    On the role of stochastic Fermi acceleration in setting the dissipation scale of turbulence in the interstellar medium

    Full text link
    We consider the dissipation by Fermi acceleration of magnetosonic turbulence in the Reynolds Layer of the interstellar medium. The scale in the cascade at which electron acceleration via stochastic Fermi acceleration (STFA) becomes comparable to further cascade of the turbulence defines the inner scale. For any magnetic turbulent spectra equal to or shallower than Goldreich-Sridhar this turns out to be 1012\ge 10^{12}cm, which is much larger than the shortest length scales observed in radio scintillation measurements. While STFA for such spectra then contradict models of scintillation which appeal directly to an extended, continuous turbulent cascade, such a separation of scales is consistent with the recent work of \citet{Boldyrev2} and \citet{Boldyrev3} suggesting that interstellar scintillation may result from the passage of radio waves through the galactic distribution of thin ionized boundary surfaces of HII regions, rather than density variations from cascading turbulence. The presence of STFA dissipation also provides a mechanism for the non-ionizing heat source observed in the Reynolds Layer of the interstellar medium \citep{Reynolds}. STFA accommodates the proper heating power, and the input energy is rapidly thermalized within the low density Reynolds layer plasma.Comment: 12 Pages, no figures. Accepted for publication in MNRA

    Thank you to our 2017 peer reviewers

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 6042-6052, doi:10.1029/2018JC014410.Similar to the construction of physical ships and laboratory buildings, scientific knowledge is built incrementally and requires solid components of data, theory, and methodology at each phase of the “construction.” The peer‐review process provides the necessary “inspection” and the assurance that every step of the construction is solid, particularly in regard to the proper use of the scientific method. The peer‐review process helps improve the published work by providing constructive suggestions and by safeguarding against scientific work that could later be found to be built on shaky foundations. Because no single scientist has intimate knowledge of today's many aspects of the Ocean Sciences, we rely on each other's expertise to serve as unbiased “inspectors” of published articles. Your considerable time and effort, spent reviewing JGR‐Oceans manuscript(s) during 2017, are sincerely appreciated by our editorial board and by the Ocean Science community at large. We thank you for rising to this professional challenge and for your wisdom, commitment, skill, and service.2019-03-1

    Exebacase for Staphylococcus aureus bloodstream infection and endocarditis

    Get PDF
    BACKGROUND: Novel therapeutic approaches are critically needed for Staphylococcus aureus bloodstream infections (BSI), particularly for methicillin-resistant S. aureus (MRSA). Exebacase, a first-in-class antistaphylococcal lysin, is a direct lytic agent that is rapidly bacteriolytic, eradicates biofilms, and synergizes with antibiotics. METHODS: In this superiority-design study, we randomly assigned 121 patients with S. aureus BSI/endocarditis to receive a single dose of exebacase or placebo. All patients received standard-of-care antibiotics. The primary efficacy endpoint was clinical outcome (responder rate) at Day 14. RESULTS: Clinical responder rates at Day 14 were 70.4% and 60.0% in the exebacase + antibiotics and antibiotics alone groups, respectively (difference=10.4, 90% CI [-6.3, 27.2], p-value=0.31), and were 42.8 percentage points higher in the pre-specified exploratory MRSA subgroup (74.1% vs. 31.3%, difference=42.8, 90% CI [14.3, 71.4], ad hoc p value=0.01). Rates of adverse events (AEs) were similar in both groups. No AEs of hypersensitivity to exebacase were reported. Thirty-day all-cause mortality rates were 9.7% and 12.8% in the exebacase + antibiotics and antibiotics alone groups, respectively, with a notable difference in MRSA (3.7% vs. 25.0%, difference= -21.3, 90% CI [-45.1, 2.5], ad hoc p-value=0.06). Among MRSA patients in the United States, median length-of-stay was 4-days shorter and 30-day hospital readmission rates were 48 percentage points lower in the exebacase-treated group compared with antibiotics alone. CONCLUSIONS: This study establishes proof-of-concept for exebacase and direct lytic agents as potential therapeutics and supports conduct of a confirmatory study focused on exebacase to treat MRSA BSI

    T Follicular Helper Cells Have Distinct Modes of Migration and Molecular Signatures in Naive and Memory Immune Responses

    Get PDF
    SummaryB helper follicular T (Tfh) cells are critical for long-term humoral immunity. However, it remains unclear how these cells are recruited and contribute to secondary immune responses. Here we show that primary Tfh cells segregate into follicular mantle (FM) and germinal center (GC) subpopulations that display distinct gene expression signatures. Restriction of the primary Tfh cell subpopulation in the GC was mediated by downregulation of chemotactic receptor EBI2. Following collapse of the GC, memory T cells persisted in the outer follicle where they scanned CD169+ subcapsular sinus macrophages. Reactivation and intrafollicular expansion of these follicular memory T cells in the subcapsular region was followed by their extrafollicular dissemination via the lymphatic flow. These data suggest that Tfh cells integrate their antigen-experience history to focus T cell help within the GC during primary responses but act rapidly to provide systemic T cell help after re-exposure to the antigen

    Designing reliable cyber-physical systems overview associated to the special session at FDL’16

    Get PDF
    CPS, that consist of a cyber part – a computing system – and a physical part – the system in the physical environment – as well as the respective interfaces between those parts, are omnipresent in our daily lives. The application in the physical environment drives the overall requirements that must be respected when designing the computing system. Here, reliability is a core aspect where some of the most pressing design challenges are: • monitoring failures throughout the computing system, • determining the impact of failures on the application constraints, and • ensuring correctness of the computing system with respect to application-driven requirements rooted in the physical environment. This paper provides an overview of techniques discussed in the special session to tackle these challenges throughout the stack of layers of the computing system while tightly coupling the design methodology to the physical requirements.</p
    corecore