23 research outputs found

    Osteoarthritis and the Mediterranean Diet: A Systematic Review

    Get PDF
    Osteoarthritis (OA) affects 240 million people globally. Few studies have examined the links between osteoarthritis and the Mediterranean diet (MD). The aim of this paper was to systematically review and analyze the epidemiological evidence in humans on the MD and its association with OA. A systematic search of EMBASE identified three studies that explored the association between MD and OA. Two of them were cross-sectional and the third one was a 16-week randomized clinical trial. Prisma declaration was followed to carry out this review. These studies described a positive association between a higher adherence to a MD and the quality of life of participants suffering OA. The prevalence of OA was lower in participants with a higher adherence to a Mediterranean diet. Biomarkers of inflammation and cartilage degradation related to OA were also analyzed and significant differences were detected only for IL1-, which decreased in the MD group. Exploring the relationship between MD and OA is complex, moreover, the limited evidence and methodological differences in such studies makes it difficult to compare results. In conclusion, the three studies included in this systematic review demonstrated some relation between osteoarthritis and a Mediterranean diet. However, prospective and longer interventions are required to evaluate the long-term efficacy of the Mediterranean diet to improve symptomatology and preventing osteoarthritis

    Xenopus Oocytes as a Powerful Cellular Model to Study Foreign Fully-Processed Membrane Proteins

    Get PDF
    The use of Xenopus oocytes in electrophysiological and biophysical research constitutes a long and successful story, providing major advances to the knowledge of the function and modulation of membrane proteins, mostly receptors, ion channels, and transporters. Earlier reports showed that these cells are capable of correctly expressing heterologous proteins after injecting the corresponding mRNA or cDNA. More recently, the Xenopus oocyte has become an outstanding host–cell model to carry out detailed studies on the function of fully-processed foreign membrane proteins after their microtransplantation to the oocyte. This review focused on the latter overall process of transplanting foreign membrane proteins to the oocyte after injecting plasma membranes or purified and reconstituted proteins. This experimental approach allows for the study of both the function of mature proteins, with their native stoichiometry and post-translational modifications, and their putative modulation by surrounding lipids, mostly when the protein is purified and reconstituted in lipid matrices of defined composition. Remarkably, this methodology enables functional microtransplantation to the oocyte of membrane receptors, ion channels, and transporters from different sources including human post-mortem tissue banks. Despite the large progress achieved over the last decades on the structure, function, and modulation of neuroreceptors and ion channels in healthy and pathological tissues, many unanswered questions remain and, most likely, Xenopus oocytes will continue to help provide valuable responses.The work in the authors’ laboratories has been supported by grants SAF2017-82977-P (AEI/FEDER, UE) and PGC2018-093505-B-I00 from MINECO and GRE17-01 from Universidad de Alicante (Spain)

    Muscle-Type Nicotinic Receptor Blockade by Diethylamine, the Hydrophilic Moiety of Lidocaine

    Get PDF
    Lidocaine bears in its structure both an aromatic ring and a terminal amine, which can be protonated at physiological pH, linked by an amide group. Since lidocaine causes multiple inhibitory actions on nicotinic acetylcholine receptors (nAChRs), this work was aimed to determine the inhibitory effects of diethylamine (DEA), a small molecule resembling the hydrophilic moiety of lidocaine, on Torpedo marmorata nAChRs microtransplanted to Xenopus oocytes. Similarly to lidocaine, DEA reversibly blocked acetylcholine-elicited currents (IACh) in a dose-dependent manner (IC50 close to 70 μM), but unlike lidocaine, DEA did not affect IACh desensitization. IACh inhibition by DEA was more pronounced at negative potentials, suggesting an open-channel blockade of nAChRs, although roughly 30% inhibition persisted at positive potentials, indicating additional binding sites outside the pore. DEA block of nAChRs in the resting state (closed channel) was confirmed by the enhanced IACh inhibition when pre-applying DEA before its co-application with ACh, as compared with solely DEA and ACh co-application. Virtual docking assays provide a plausible explanation to the experimental observations in terms of the involvement of different sets of drug binding sites. So, at the nAChR transmembrane (TM) domain, DEA and lidocaine shared binding sites within the channel pore, giving support to their open-channel blockade; besides, lidocaine, but not DEA, interacted with residues at cavities among the M1, M2, M3, and M4 segments of each subunit and also at intersubunit crevices. At the extracellular (EC) domain, DEA and lidocaine binding sites were broadly distributed, which aids to explain the closed channel blockade observed. Interestingly, some DEA clusters were located at the α-γ interphase of the EC domain, in a cavity near the orthosteric binding site pocket; by contrast, lidocaine contacted with all α-subunit loops conforming the ACh binding site, both in α-γ and α-δ and interphases, likely because of its larger size. Together, these results indicate that DEA mimics some, but not all, inhibitory actions of lidocaine on nAChRs and that even this small polar molecule acts by different mechanisms on this receptor. The presented results contribute to a better understanding of the structural determinants of nAChR modulation.This work was supported by grants BFU2012-31359, BFU2012-39092-C02-01, BFU2011-25920, and CSD2008-00005 from the MINECO and PROMETEO/2014/11 from GVA (Spain)

    Mechanisms of Blockade of the Muscle-Type Nicotinic Receptor by Benzocaine, a Permanently Uncharged Local Anesthetic

    Get PDF
    Most local anesthetics (LAs) are amine compounds bearing one or several phenolic rings. Many of them are protonated at physiological pH, but benzocaine (Bzc) is permanently uncharged, which is relevant because the effects of LAs on nicotinic acetylcholine (ACh) receptors (nAChRs) depend on their presence as uncharged or protonated species. The aims of this study were to assess the effects of Bzc on nAChRs and to correlate them with its binding to putative interacting sites on this receptor. nAChRs from Torpedo electroplaques were microtransplanted to Xenopus oocytes and currents elicited by ACh (IAChs), either alone or together with Bzc, were recorded at different potentials. Co-application of ACh with increasing concentrations of Bzc showed that Bzc reversibly blocked nAChRs. IACh inhibition by Bzc was voltage-independent, but the IACh rebound elicited when rinsing Bzc suggests an open-channel blockade. Besides, ACh and Bzc co-application enhanced nAChR desensitization. When Bzc was just pre-applied it also inhibited IACh, by blocking closed (resting) nAChRs. This blockade slowed down the kinetics of both the IACh activation and the recovery from blockade. The electrophysiological results indicate that Bzc effects on nAChRs are similar to those of 2,6-dimethylaniline, an analogue of the hydrophobic moiety of lidocaine. Furthermore, docking assays on models of the nAChR revealed that Bzc and DMA binding sites on nAChRs overlap fairly well. These results demonstrate that Bzc inhibits nAChRs by multiple mechanisms and contribute to better understanding both the modulation of nAChRs and how LAs elicit some of their clinical side effects.This work was supported by grants BFU2012-31359, BFU2015-66612-P, SAF2015-66275-C2-1-R and SAF2017-82977-P (AEI/FEDER, UE) from MINECO, PROMETEO/2014/11 from Generalitat Valenciana (Spain) and GRE17-01 from Universidad de Alicante. R.C. held a predoctoral fellowship from Universidad de Alicante (FPUUA36) and M.N. a predoctoral industrial fellowship from Ministerio de EconomĂ­a, Industria y Competitividad (DI-16-08303)

    Adult-onset Still's disease with atypical cutaneous manifestations

    Get PDF
    The diagnosis of adult-onset Still's disease (AOSD) can be very difficult. There are no specific tests available, and diagnosis is usually based on a symptom complex and the well-described typical evanescent rash seen in the majority of patients. However, in recent years, other atypical cutaneous manifestations of AOSD have been reported. These atypical skin eruptions often present in addition to the typical evanescent rash but may also be the only skin manifestation, resulting in delayed diagnosis because of under-recognition. In this study, we present 3 new cases of AOSD with atypical cutaneous manifestations diagnosed during a 30-year period in our department and review 78 additional cases previously reported (PubMed 1990-2016). These 81 patients form the basis of the present analysis. The overall prevalence of atypical cutaneous manifestations in our AOSD population was 14%. These manifestations may appear at any time over the course of the disease, and usually occur in patients who have persistent and severe disease, with a considerable frequency of clinical complications (23%), including serositis, myopericarditis, lung involvement, abdominal pain, neurologic involvement, and reactive hemophagocytic syndrome. The most representative and frequent lesion among the nonclassical skin rashes is the development of persistent pruritic papules and/or plaques. Interestingly, these lesions show a distinctive histological pattern. Other, less frequently observed lesions include urticaria and urticaria-like eruptions, generalized or widespread non-pruritic persistent erythema, vesiculopustular eruptions, a widespread peau d'orange appearance of the skin, and edema of the eyelids mimicking dermatomyositis without any accompanying skin lesion. The great majority of these patients required medium or high doses of glucocorticoids (including intravenous methylprednisolone pulse therapy in some cases) and, in nearly 40%, a more potent or maintenance immunotherapy with immunosuppressant drugs and/or biologic agents (mainly anakinra or tocilizumab) to control or manage symptoms because of a polycyclic or chronic course. The development of atypical cutaneous manifestations seems to be associated with a potentially worse prognosis, with a mortality rate reaching 8% primarily because of infectious complications related to immunosuppressive therapy. In conclusion, the appearance of atypical cutaneous manifestations is not uncommon in AOSD. Recognition of this clinical variant is crucial for the early diagnosis of AOSD, as it might imply persistent disease activity and the need for more aggressive treatment

    Muscle-Type Nicotinic Receptor Modulation by 2,6-Dimethylaniline, a Molecule Resembling the Hydrophobic Moiety of Lidocaine

    Get PDF
    To identify the molecular determinants responsible for lidocaine blockade of muscle-type nAChRs, we have studied the effects on this receptor of 2,6-dimethylaniline (DMA), which resembles lidocaine’s hydrophobic moiety. Torpedo marmorata nAChRs were microtransplanted to Xenopus oocytes and currents elicited by ACh (IACh), either alone or co-applied with DMA, were recorded. DMA reversibly blocked IACh and, similarly to lidocaine, exerted a closed-channel blockade, as evidenced by the enhancement of IACh blockade when DMA was pre-applied before its co-application with ACh, and hastened IACh decay. However, there were marked differences among its mechanisms of nAChR inhibition and those mediated by either the entire lidocaine molecule or diethylamine (DEA), a small amine resembling lidocaine’s hydrophilic moiety. Thereby, the IC50 for DMA, estimated from the dose-inhibition curve, was in the millimolar range, which is one order of magnitude higher than that for either DEA or lidocaine. Besides, nAChR blockade by DMA was voltage-independent in contrast to the increase of IACh inhibition at negative potentials caused by the more polar lidocaine or DEA molecules. Accordingly, virtual docking assays of DMA on nAChRs showed that this molecule binds predominantly at intersubunit crevices of the transmembrane-spanning domain, but also at the extracellular domain. Furthermore, DMA interacted with residues inside the channel pore, although only in the open-channel conformation. Interestingly, co-application of ACh with DEA and DMA, at their IC50s, had additive inhibitory effects on IACh and the extent of blockade was similar to that predicted by the allotopic model of interaction, suggesting that DEA and DMA bind to nAChRs at different loci. These results indicate that DMA mainly mimics the low potency and non-competitive actions of lidocaine on nAChRs, as opposed to the high potency and voltage-dependent block by lidocaine, which is emulated by the hydrophilic DEA. Furthermore, it is pointed out that the hydrophobic (DMA) and hydrophilic (DEA) moieties of the lidocaine molecule act differently on nAChRs and that their separate actions taken together account for most of the inhibitory effects of the whole lidocaine molecule on nAChRs.This work was supported by grants BFU2012-31359, SAF2015-66275-C2-1-R, BFU2011-25920, BFU2015-66612-P, and CSD2008-00005 from the MINECO and PROMETEO/2014/11 from GVA (Spain)

    Assessment of inflammation in patients with rheumatoid arthritis using thermography and machine learning: a fast and automated technique

    Full text link
    Objectives Sensitive detection of joint inflammation in rheumatoid arthritis (RA) is crucial to the success of the treat-to-target strategy. In this study, we characterise a novel machine learning-based computational method to automatically assess joint inflammation in RA using thermography of the hands, a fast and non-invasive imaging technique. Methods We recruited 595 patients with arthritis and osteoarthritis, as well as healthy subjects at two hospitals over 4 years. Machine learning was used to assess joint inflammation from the thermal images of the hands using ultrasound as the reference standard, obtaining a Thermographic Joint Inflammation Score (ThermoJIS). The machine learning model was trained and tuned using data from 449 participants with different types of arthritis, osteoarthritis or without rheumatic disease (development set). The performance of the method was evaluated based on 146 patients with RA (validation set) using Spearman's rank correlation coefficient, area under the receiver-operating curve (AUROC), average precision, sensitivity, specificity, positive and negative predictive value and F1-score. Results ThermoJIS correlated moderately with ultrasound scores (grey-scale synovial hypertrophy=0.49, p<0.001; and power Doppler=0.51, p<0.001). The AUROC for ThermoJIS for detecting active synovitis was 0.78 (95% CI, 0.71 to 0.86; p<0.001). In patients with RA in clinical remission, ThermoJIS values were significantly higher when active synovitis was detected by ultrasound. Conclusions ThermoJIS was able to detect joint inflammation in patients with RA, even in those in clinical remission. These results open an opportunity to develop new tools for routine detection of joint inflammation

    Mechanisms Underlying the Strong Inhibition of Muscle-Type Nicotinic Receptors by Tetracaine

    Get PDF
    Nicotinic acetylcholine (ACh) receptors (nAChRs) are included among the targets of a variety of local anesthetics, although the molecular mechanisms of blockade are still poorly understood. Some local anesthetics, such as lidocaine, act on nAChRs by different means through their ability to present as both charged and uncharged molecules. Thus, we explored the mechanisms of nAChR blockade by tetracaine, which at physiological pH is almost exclusively present as a positively charged local anesthetic. The nAChRs from Torpedo electroplaques were transplanted to Xenopus oocytes and the currents elicited by ACh (IAChs), either alone or co-applied with tetracaine, were recorded. Tetracaine reversibly blocked IACh, with an IC50 (i.e., the concentration required to inhibit half the maximum IACh) in the submicromolar range. Notably, at very low concentrations (0.1 ÎĽM), tetracaine reduced IACh in a voltage-dependent manner, the more negative potentials produced greater inhibition, indicating open-channel blockade. When the tetracaine concentration was increased to 0.7 ÎĽM or above, voltage-independent inhibition was also observed, indicating closed-channel blockade. The IACh inhibition by pre-application of just 0.7 ÎĽM tetracaine before superfusion of ACh also corroborated the notion of tetracaine blockade of resting nAChRs. Furthermore, tetracaine markedly increased nAChR desensitization, mainly at concentrations equal or higher than 0.5 ÎĽM. Interestingly, tetracaine did not modify desensitization when its binding within the channel pore was prevented by holding the membrane at positive potentials. Tetracaine-nAChR interactions were assessed by virtual docking assays, using nAChR models in the closed and open states. These assays revealed that tetracaine binds at different sites of the nAChR located at the extracellular and transmembrane domains, in both open and closed conformations. Extracellular binding sites seem to be associated with closed-channel blockade; whereas two sites within the pore, with different affinities for tetracaine, contribute to open-channel blockade and the enhancement of desensitization, respectively. These results demonstrate a concentration-dependent heterogeneity of tetracaine actions on nAChRs, and contribute to a better understanding of the complex modulation of muscle-type nAChRs by local anesthetics. Furthermore, the combination of functional and virtual assays to decipher nAChR-tetracaine interactions has allowed us to tentatively assign the main nAChR residues involved in these modulating actions.This work was supported by grants BFU2012-31359, SAF2015-66275-C2-1-R, and SAF2017-82977-P (AEI/FEDER, UE) from MINECO and PROMETEO/2014/11 from Generalitat Valenciana (Spain). RC held a predoctoral fellowship from Universidad de Alicante (FPUUA36)

    Modulación del receptor nicotínico por moléculas de relevancia clínica

    Get PDF
    El receptor nicotínico de acetilcolina (nAChR) es el miembro mejor caracterizado de la superfamilia de canales iónicos activados por ligando (LGICs). Las disfunciones del nAChR se han relacionado con graves alteraciones fisiopatológicas del sistema nervioso, así como con alteraciones inflamatorias e inmunológicas y con el desarrollo de ciertos tipos de cáncer. Por ello, el conocimiento de las moléculas que modulan la función de este receptor, el estudio de sus mecanismos de acción y la dilucidación de sus lugares de unión son de gran interés científico, ya que son pasos fundamentales para avanzar en el desarrollo de nuevas moléculas de aplicación terapéutica, dirigidas al tratamiento de las patologías mencionadas. Esta revisión pretende describir los principales mecanismos de modulación del nAChR y exponer los efectos que diversas moléculas de interés clínico ejercen sobre el nAChR, algunas inhibiendo su actividad y otras potenciándola.Los autores están financiados por proyectos del MINECO CSD2008-00005 y BFU2012-31359

    Functional incorporation of exogenous proteins into the Xenopus oocyte membrane does not depend on intracellular calcium increase

    No full text
    Fusion of membranes occurs in diverse biological events and, in most cases, Ca2+ greatly augments its rate. The aim of this work was to study the role played by Ca2+ when transplanting exogenous proteins into Xenopus oocyte membranes. Lipid vesicles carrying nicotinic acetylcholine (ACh) receptors (nAChRs) from Torpedo electroplaques were injected into oocytes. The time course of nAChR incorporation was assessed by recording ACh-evoked currents at different times from injection: An incorporation peak was found at 16 h, but responses were maintained for over 48 h. To assess the role played by Ca2+, two groups were considered: control and chelator-loaded oocytes. In the latter group, cells were incubated with 50 μM 1,2-bis (2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, tetrakis(acetoxymethyl)ester (BAPTA-AM) or loaded with ca. 5 nmol ethyleneglycol-bis (β-aminoethylether)-N,N,N',N'-tetra-acetic acid (EGTA) 2 h before nAChR injection. Both groups responded to ACh, although the current amplitude was smaller in chelator-loaded than in control cells. These results indicate that the slow fusion of lipoproteosome vesicles with the oocyte plasma membrane does not depend on intracellular Ca2+ increase and therefore belongs to the type called 'constitutive'. This membrane fusion process is thus different from those involved in resealing of disrupted oocyte membranes or in the fusion of cortical granules with the egg membrane.Sin financiación2.203 JCR (2000) Q2, 25/76 PhysiologyUE
    corecore