2,914 research outputs found

    Neuromorphic deep convolutional neural network learning systems for FPGA in real time

    Get PDF
    Deep Learning algorithms have become one of the best approaches for pattern recognition in several fields, including computer vision, speech recognition, natural language processing, and audio recognition, among others. In image vision, convolutional neural networks stand out, due to their relatively simple supervised training and their efficiency extracting features from a scene. Nowadays, there exist several implementations of convolutional neural networks accelerators that manage to perform these networks in real time. However, the number of operations and power consumption of these implementations can be reduced using a different processing paradigm as neuromorphic engineering. Neuromorphic engineering field studies the behavior of biological and inner systems of the human neural processing with the purpose of design analog, digital or mixed-signal systems to solve problems inspired in how human brain performs complex tasks, replicating the behavior and properties of biological neurons. Neuromorphic engineering tries to give an answer to how our brain is capable to learn and perform complex tasks with high efficiency under the paradigm of spike-based computation. This thesis explores both frame-based and spike-based processing paradigms for the development of hardware architectures for visual pattern recognition based on convolutional neural networks. In this work, two FPGA implementations of convolutional neural networks accelerator architectures for frame-based using OpenCL and SoC technologies are presented. Followed by a novel neuromorphic convolution processor for spike-based processing paradigm, which implements the same behaviour of leaky integrate-and-fire neuron model. Furthermore, it reads the data in rows being able to perform multiple layers in the same chip. Finally, a novel FPGA implementation of Hierarchy of Time Surfaces algorithm and a new memory model for spike-based systems are proposed

    Spiking row-by-row FPGA Multi-kernel and Multi-layer Convolution Processor.

    Get PDF
    Spiking convolutional neural networks have become a novel approach for machine vision tasks, due to the latency to process an input stimulus from a scene, and the low power consumption of these kind of solutions. Event-based systems only perform sum operations instead of sum of products of framebased systems. In this work an upgrade of a neuromorphic event-based convolution accelerator for SCNN, which is able to perform multiple layers with different kernel sizes, is presented. The system has a latency per layer from 1.44 μs to 9.98μs for kernel sizes from 1x1 to 7x7

    A Sensor Fusion Horse Gait Classification by a Spiking Neural Network on SpiNNaker

    Get PDF
    The study and monitoring of the behavior of wildlife has always been a subject of great interest. Although many systems can track animal positions using GPS systems, the behavior classification is not a common task. For this work, a multi-sensory wearable device has been designed and implemented to be used in the Doñana National Park in order to control and monitor wild and semiwild life animals. The data obtained with these sensors is processed using a Spiking Neural Network (SNN), with Address-Event-Representation (AER) coding, and it is classified between some fixed activity behaviors. This works presents the full infrastructure deployed in Doñana to collect the data, the wearable device, the SNN implementation in SpiNNaker and the classification results.Ministerio de Economía y Competitividad TEC2012-37868-C04-02Junta de Andalucía P12-TIC-130

    Desafíos del asesor regional de matemáticas ante la reforma en educación matemática

    Get PDF
    En el 2012, el Consejo Superior de Educación de Costa Rica aprobó un nuevo currículo de matemáticas para la Educación Primaria y Secundaria, modificando la forma tradicional en que los diferentes actores educativos han llevado a cabo el proceso de enseñanza y aprendizaje. Uno de estos actores educativos es el Asesor Pedagógico Regional de Matemáticas, muchas veces es invisibilizado en estos procesos. Esta Reforma curricular, sin embargo, lo ha potenciado como un pilar fundamental y ha dinamizado su papel dentro de cada Dirección Educativa Regional del país. En este artículo se señalarán algunos desafíos que tiene el Asesor Pedagógico Regional de matemáticas para que sea exitoso este proceso de Reforma curricular

    System based on inertial sensors for behavioral monitoring of wildlife

    Get PDF
    Sensors Network is an integration of multiples sensors in a system to collect information about different environment variables. Monitoring systems allow us to determine the current state, to know its behavior and sometimes to predict what it is going to happen. This work presents a monitoring system for semi-wild animals that get their actions using an IMU (inertial measure unit) and a sensor fusion algorithm. Based on an ARM-CortexM4 microcontroller this system sends data using ZigBee technology of different sensor axis in two different operations modes: RAW (logging all information into a SD card) or RT (real-time operation). The sensor fusion algorithm improves both the precision and noise interferences.Junta de Andalucía P12-TIC-130

    Dynamic Vision Sensor integration on FPGA-based CNN accelerators for high-speed visual classification

    Get PDF
    Deep-learning is a cutting edge theory that is being applied to many fields. For vision applications the Convolutional Neural Networks (CNN) are demanding significant accuracy for classification tasks. Numerous hardware accelerators have populated during the last years to improve CPU or GPU based solutions. This technology is commonly prototyped and tested over FPGAs before being considered for ASIC fabrication for mass production. The use of commercial typical cameras (30fps) limits the capabilities of these systems for high speed applications. The use of dynamic vision sensors (DVS) that emulate the behavior of a biological retina is taking an incremental importance to improve this applications due to its nature, where the information is represented by a continuous stream of spikes and the frames to be processed by the CNN are constructed collecting a fixed number of these spikes (called events). The faster an object is, the more events are produced by DVS, so the higher is the equivalent frame rate. Therefore, these DVS utilization allows to compute a frame at the maximum speed a CNN accelerator can offer. In this paper we present a VHDL/HLS description of a pipelined design for FPGA able to collect events from an Address-Event-Representation (AER) DVS retina to obtain a normalized histogram to be used by a particular CNN accelerator, called NullHop. VHDL is used to describe the circuit, and HLS for computation blocks, which are used to perform the normalization of a frame needed for the CNN. Results outperform previous implementations of frames collection and normalization using ARM processors running at 800MHz on a Zynq7100 in both latency and power consumption. A measured 67% speedup factor is presented for a Roshambo CNN real-time experiment running at 160fps peak rate.Comment: 7 page

    Capacitación de docentes con apoyo de tecnologías en la reforma de la educación matemática

    Get PDF
    En este artículo se describe parte de los resultados de la capacitación de docentes que participaron en cursos bimodales desarrollados en Costa Rica en el 2013: Uso de tecnología y uso de historia de las matemáticas. Se trabajó con 432 docentes de enseñanza primaria y de secundaria. Se realizaron dos procesos de capacitación bimodal con 303 profesores de enseñanza primaria y 129 docentes de enseñanza secundaria, utilizando, principalmente, la plataforma Moodle. En estos procesos se aplicaron dos encuestas cerradas en línea con apoyo del Instituto de Desarrollo Profesional Uladislao Gámez Solano (IDP-UGS). De este trabajo se desprende, como principal conclusión, la necesidad de reformular la estrategia de capacitación tradicional de docentes de matemáticas que es impartida por el IDP-UGS, orientándola hacia una mayor integración entre las necesidades de los educadores y aquellas impuestas por el nuevo currículo de matemáticas que se aprobó en este país en mayo del 2012

    Event-based Row-by-Row Multi-convolution engine for Dynamic-Vision Feature Extraction on FPGA

    Get PDF
    Neural networks algorithms are commonly used to recognize patterns from different data sources such as audio or vision. In image recognition, Convolutional Neural Networks are one of the most effective techniques due to the high accuracy they achieve. This kind of algorithms require billions of addition and multiplication operations over all pixels of an image. However, it is possible to reduce the number of operations using other computer vision techniques rather than frame-based ones, e.g. neuromorphic frame-free techniques. There exists many neuromorphic vision sensors that detect pixels that have changed their luminosity. In this study, an event-based convolution engine for FPGA is presented. This engine models an array of leaky integrate and fire neurons. It is able to apply different kernel sizes, from 1x1 to 7x7, which are computed row by row, with a maximum number of 64 different convolution kernels. The design presented is able to process 64 feature maps of 7x7 with a latency of 8.98 s.Ministerio de Economía y Competitividad TEC2016-77785-

    Accuracy Improvement of Neural Networks Through Self-Organizing-Maps over Training Datasets

    Get PDF
    Although it is not a novel topic, pattern recognition has become very popular and relevant in the last years. Different classification systems like neural networks, support vector machines or even complex statistical methods have been used for this purpose. Several works have used these systems to classify animal behavior, mainly in an offline way. Their main problem is usually the data pre-processing step, because the better input data are, the higher may be the accuracy of the classification system. In previous papers by the authors an embedded implementation of a neural network was deployed on a portable device that was placed on animals. This approach allows the classification to be done online and in real time. This is one of the aims of the research project MINERVA, which is focused on monitoring wildlife in Do˜nana National Park using low power devices. Many difficulties were faced when pre-processing methods quality needed to be evaluated. In this work, a novel pre-processing evaluation system based on self-organizing maps (SOM) to measure the quality of the neural network training dataset is presented. The paper is focused on a three different horse gaits classification study. Preliminary results show that a better SOM output map matches with the embedded ANN classification hit improvement.Junta de Andalucía P12-TIC-1300Ministerio de Economía y Competitividad TEC2016-77785-
    corecore