
Abstract—Spiking convolutional neural networks have become
a novel approach for machine vision tasks, due to the latency
to process an input stimulus from a scene, and the low power
consumption of these kind of solutions. Event-based systems only
perform sum operations instead of sum of products of frame-
based systems. In this work an upgrade of a neuromorphic
event-based convolution accelerator for SCNN, which is able to
perform multiple layers with different kernel sizes, is presented.
The system has a latency per layer from 1.44 μs to 9.98μs for
kernel sizes from 1x1 to 7x7.

Index Terms—Spiking Convolutional Neural Networks, FPGA,
Computer vision, Neuromorphic engineering.

I. INTRODUCTION

Neuromorphic engineering develops VLSI systems taking

inspiration from the structure and functioning of human brain,

where information is encoded in spikes that are processed by

layers of neurons. From this new approach, several sensors

have been developed, such as DVS [1], where the particular

behaviour of cells of the mammal’s retina are mimicked on

mixed-signal chips. Each pixel of these sensors behaves as a

neuron that produces an spike (event) if changes of luminosity

reach a threshold. The main advantage of this kind of sensor

compared with frame based vision sensors is that not all pixels

of the image are processed. Hence, only those that detect

changes in the scene produce an event. This flow of events can

be used to solve machine vision tasks, such as detecting [2],

tracking objects or being processed by Spiking Convolutional

Neural Networks (SCNN) for more general scenarios.

In a previous work, a 128x128 convolution processor im-

plemented in FPGA was presented. The processor is based on

the LIF neuron model and it implements the refractory period

and leakage properties. This processor is able to perform

64 convolutions with kernel sizes from 1x1 to 7x7, reading

data row by row instead of pixel by pixel, reducing memory

access, thus the latency. However this processor presented an

important limitation, it can only implement one layer with

a kernel size at a time, so if less than 64 convolutions are

performed, some convolution units are not working, wasting

computational resources.

In this work, we present a fully configurable version of the

FPGA convolution processor that divides the convolution units

in layers; therefore, each layer can perform convolutions with

different kernel sizes and sending their output events to the

next layer automatically. This new characteristic reduces the

amount of wasted computational resources, making it easier

to perform an SCNN.

The paper is structured as follows: Section II explains how

the engine works with the new features added. Section III

presents the conclusions.

II. SPIKING CONVOLUTION ARCHITECTURE

A. System overview

The architecture presented in this paper is an updated

version of the one presented on [3].

The design has a 32-bit bus to be configured with a host

microcontroller and two Address-Event Representation (AER)

bus [4] to receive/send events. AER bus follows a four step

handshake protocol to connect with neuromorphic devices.

The processor stores the kernel weights, the membrane

potential, leakage and refractory period timestamps of all

neurons in available block RAM (BRAM) memory from the

FPGA. In order to apply leakage and refractory period, the

design has two global counters, which counts are compared

with timestamps stored in BRAM. However, those counters

can overflow and then, leakage and refractory period would

be applied wrongly. With the aim to avoid this situation,

two mechanisms based on distributed RAM (LUTRAM) were

developed. Those mechanisms store in LUTRAM memory a

flag bit that indicates that an overflow has occurred applying

leakage and refractory period correctly.

Convolution operation is performed in the convolution en-

gine (CE) module, it consists of a state machine that reads

rows of data from memories performing the spiking convo-

lution. During convolution timestamps are compared with the

global counters in order to apply leakage and refractory period.

This module generates a spike if the membrane potential of

a neuron reaches a configurable threshold, sending the (x,y)

position of the spike as an event with the convolution ID.

The system presented in this paper groups convolution

engines into layers with their respective kernel sizes.

The following subsections describe the new features of the

architecture and the FPGA results.

B. Configuration module

The microcontroller configures a layer mask (ML), this

mask indicates for each convolution engine which layer they

belong to. Through this mask, convolution engines are able

to select their parameters and send output events to the next
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Fig. 1: Parameter selection using Layer Mask for two CE of

different layers.

layer. The fact of having multiple layers implies that memory

registers to store the parameters and the multiplexers size

increase in function of the number of layers. Fig.1 represents

an example of parameter selection for 2 CE of different layers.

In this figure, there are two register banks that store the leakage

and the refractory period values for both layers. Through ML

they select the channel to read the corresponding layer data.

C. Cycle output

Convolutions can be configured in groups with different

kernel sizes and the output events contain information about

the used convolution engine. It is possible to perform multiple

convolutions in one chip.

The convolution id with the layer mask allows the output

multiplexer to route the output event to the next layer or the

output AER bus. Following the previous example of two CE

from different layers, Fig. 2 illustrated how data is routed

between layers to the output. This new characteristic is a

novelty in this kind of processors since other processors need

to reconfigure the system between convolution layers to load

the weights of the following layer, whereas other designs

remove this reconfiguration step duplicating the hardware

with the kernels loaded, but this solution increases the power

consumption.

Resource Utilization Available Utilization %
LUT 257503 277400 92,83
LUTRAM 50851 108200 47.00
FF 179925 554800 32,43
BRAM 713.5 755 94,37
IO 43 362 11,88

TABLE I: FPGA resources.

D. FPGA implementation

The design was described in System Verilog and synthesized

for a Zynq-7100 MMP platform using Vivado 2016.4.

The design presented works at 90 MHz with a latency of

1.44-9.98 μs and an input throughput of 0.69-0.10 Mevps

(megaevents per second) for kernel sizes from 1x1 to 7x7

respectively. FPGA resources consumed for 64 convolution

Fig. 2: Event routing for two convolution layer with pooling

enabled.

Fig. 3: Example of filters output for one layer of Gabor filters

and a second layer of Sobel kernels.

engine with two convolution layers are shown in Table I. Fig.

3 shows an example of filters output from the system.

III. CONCLUSIONS

This article has presented a neuromorphic multi-kernel and

multi-layer convolution processor for FPGA. The architecture

has added new features from previous works to be capable

to implement multiple layers in the same chip to deploy an

spiking convolutional neural network in a future.
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