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Abstract—Neural networks algorithms are commonly used to
recognize patterns from different data sources such as audio or
vision. In image recognition, Convolutional Neural Networks are
one of the most effective techniques due to the high accuracy they
achieve. This kind of algorithms require billions of addition and
multiplication operations over all pixels of an image. However,
it is possible to reduce the number of operations using other
computer vision techniques rather than frame-based ones, e.g.
neuromorphic frame-free techniques. There exists many neu-
romorphic vision sensors that detect pixels that have changed
their luminosity. In this study, an event-based convolution engine
for FPGA is presented. This engine models an array of leaky
integrate and fire neurons. It is able to apply different kernel
sizes, from 1x1 to 7x7, which are computed row by row, with a
maximum number of 64 different convolution kernels. The design
presented is able to process 64 feature maps of 7x7 with a latency
of 8.98µs.

Index Terms—Convolutional Neural Networks, FPGA, com-
puter vision, artificial intelligence, deep learning.

I. INTRODUCTION

Convolutional Neural Networks (CNN) have become one
of the most popular solutions for image classification in real-
time, due to the relatively simple supervised training and their
efficiency extracting features from a scene. This kind of neural
networks are very useful in vision tasks, such as classification,
recommender systems and natural language processing. CNNs
are usually trained using backpropagation algorithm [1], where
the CNN’s output is constantly matched to a label for a given
input image from a dataset. The training of the network is
usually performed by hardware accelerators such as Graphical
Processor Units (GPUs).

In spite of the good results extracting features of images
given by this kind of networks[2][3], they require many
computational resources due to the great number of operations
that a convolution step requires per pixel (multiplications and
accumulations).

Currently, CNNs are usually deployed in high-end servers
with multiple GPUs. Despite of the accuracy and the reduced
latency obtained from these architectures, this fact makes it not
very useful for real time embedded applications. On the other
hand, many mobile phones include a small GPU, but running
a CNN on it requires more power demands, what makes it not
ideal due to the limited battery capacity of these devices.

There exists many ASIC implementations of convolution
accelerators that reduce the power consumption without los-

ing accuracy, reducing the number of operations and pixel
precision [4][5].

Although these accelerators manage to run big networks,
such as VGG16 [6], frame-based convolutions require many
operations due to the great number of pixels that are pro-
cessed. Many accelerators reduce the number of operations
discarding the multiplication of those pixels whose value is 0
[7]. However, there are other image-processing techniques, like
neuromorphic engineering event-based ones, that can reduce
the number of operations [8].

Neuromorphic engineering takes inspiration from the struc-
ture and operation of the human brain, where information,
encoded in spikes (also called events), are processed in par-
allel by massive populations of neurons interconnected via
synapses.

Based on this kind of processing, several event-based sen-
sors have been developed, such as the Dynamic Vision Sensor
(DVS) [9][10][11]. DVS represents a scene in a visual way,
where each pixel is a neuron that generates a spike stream
depending on its luminosity changes. A frame-based camera
records all the pixel values of the scene even if parts of it have
not changed. However, a flow of events of the DVS represents
only the moving reality; it does not need to load all the static
pixels of an image. This property reduces the total number
of pixels to be processed. Furthermore, there is no sample
period in these devices. As soon as a pixel changes, an event is
produced and sent out from the sensor. Event-based processing
is, therefore, asynchronous and continuous.

This stream of events can be processed in order to solve
object detection for vision tasks, such as object tracking or
pattern recognition. Within pattern recognition, there are many
techniques to extract features from a scene [12] [13]. This
kind of techniques are mostly not implemented in hardware,
although there are some neuromorphic hardware solutions,
such as SpiNNaker[14].

Spiking Convolutional Neural Networks (SCNN) are a
particular type of SNN [15][16].

SCNNs have high accuracy and they are very efficient in
terms of power and speed compared to the conventional frame-
based ConvNets. This kind of network has been deployed in
multiple chip solutions, such as FPGAs or ASICs [17][18].

In this paper a spiking multi-convolution engine is pre-
sented. This engine processes input events and applies kernel
values row by row over neurons, storing the neuron membrane
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potential in embedded Block RAM memory of the FPGA and
firing spikes if a configurable threshold has been reached. A
leakage mechanism has also been implemented. The system
has been simulated at FPGA post implementation applying
different convolution kernels, visualizing and checking the
output from the system.

The paper is organized as follows: Section II describes
the Spiking Convolution concept in detail, while Section III
explains how the engine works. Section IV presents the test
scenario that has been used to verify the system functionality
and, finally, the results and conclusions are presented in
sections V and VI, respectively.

II. SPIKING CONVOLUTION

In image processing, convolution operation consists in ap-
plying a kernel matrix to a pixel, multiplying kernel values
with corresponding pixels and adding these results as a single
value. The convolution is performed by sliding the kernel
over all pixels of the image, generally starting at the top
left corner. For simplicity, the boundaries are usually not
computed. Mathematically, it is defined as shown in Equation
1, where K is an NxM kernel matrix of the convolution, X the
input image and Y the convolved image.

∀i,j → Y (i, j) =

N
2∑

a=−N
2

M
2∑

b=−M
2

K (a, b) ·X (a+ i, b+ j) (1)

Y(i,j) is defined by the corresponding input pixel X(i,j) and
the weighted adjacent pixels, scaled by K values.

However, in an event-based processing, not all pixels of
a frame are processed because neuromorphic sensors get
luminosity changes of the current scene, and these changes
are transmitted as events. An event is represented by an (x,y,p)
address that corresponds to the pixel address (x,y) of an image
that is changing, and a polarity bit (p) that indicates if the pixel
is ON or OFF. ON polarity means that luminosity detected by
the pixel in the current state is higher than the luminosity
detected in the previous state, whereas OFF polarity means
the opposite: the luminosity detected in the current state is
lower than the luminosity detected in the previous state. In
a spiking convolution, an input image X is coded in a way
where each pixel X(i,j) is represented by a number of events
of a visual source output, such as DVS retina. The results of
convolution operations are stored in a Y matrix (capacitors for
analog circuits or registers or RAM cells for digital circuits).
When an input event arrives, the corresponding pixel and its
neighbors are modified in Y adding the convolution kernel.
The following Equation (2) shows the operation for computing
each incoming event with address(i,j):

Y (i+ a, j + b) = Y (i+ a, j + b) +K (a, b) ,∀a, b
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, N,M = dim (K)

(2)

Once all the events of pixel X(i,j) have been received and
calculated, the integrator value of the corresponding address

Y(i,j) has accumulated X(i+a,j+b)∀(a, b),(number of events)
times the value of the kernel, thus the multiplication operation
has been reached. The output of the convolution operation,
at this point, is stored in a Y matrix of integrators. There
are several ways to send out the resulting Y matrix. In this
paper, it is inspired in the leaky integrate-and-fire (LIF) neuron
model[19]. The continuous addition of values of the kernel
over a neuron increases or decreases its membrane potential
depending on positive or negative coefficients, respectively.
When the membrane potential of a neuron reaches a positive
(PTH) or negative threshold (NTH), a spike is generated
with the corresponding polarity and x,y address, resetting its
membrane potential as shown in Figure 1.

Fig. 1: Changes on the membrane potential of a neuron along
time with input events (IE).

A biological neuron reduces its membrane potential due to
a leakage in case that the neuron does not receive any kind of
excitation. We have implemented this property of biological
neurons, because a LIF neuron that has not received any
excitation means that it is not giving information about the
scene. The leakage decay time of a neuron and its reduced
potential value, are parameters that allow controlling the
output event rate. This implies that a short decay time indicates
that neurons would be resetting more often. On the other hand,
larger values for decay time make neurons reset their potential
rarely, increasing the number of output spikes.

III. SPIKE CONVOLUTION ENGINE

In this section, three main modules of the architecture are
explained for Xilinx FPGAs: (1) memories for membrane po-
tential, timestamps and kernel, based on BRAMs, (2) leakage
memories implemented on LUTRAMs and (3) Convolution
engine module where a convolution operation is performed.
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A. Membrane potential, Timestamps and Kernel memories

In Xilinx FPGAs the main memory resource is Block RAM
memory (BRAM). BRAM is a set of dual-port RAM modules
instantiated into the FPGA fabric to provide on-chip storage
for a relatively large set of data. The two types of BRAM
memories available in a device can hold either 18k or 36k bits,
and the available amount of these memories is device specific.
In this design, BRAM is divided in three different memory
banks: one bank stores the membrane potential, the second
one stores timestamps and the last bank stores the values of
the kernels.

The maximum image size that the system is able to compute
is 128x128 pixels. The system can process 64 different con-
volution engines that can access the BRAM memories to read
and write the membrane potential and timestamps values for
each input event convolution operation. Membrane potential
memory is organized in 16 BRAMs, where each one stores
rows of 8 membrane potentials. Memories are enabled using
the x address of the input event that selects which blocks are
read or written, whereas the y address of the input event and
convolution engine ID are used to address the memory. This
way, each convolution engine has its own memory space using
the same memory resources as shown in Fig. 3 a).

During an event processing, the convolution engine always
reads one row of two consecutive BRAMs, the one where the
input event belongs and the neighbor row. The reason of this
multiple read is that neighbor pixels of the input event can be
involved in the convolution operation, but they can be stored
in a different block. Both rows are combined in a larger row
of 16 elements to be processed by a convolution engine as it
shown in Fig 2

Fig. 2: Rows read for convolution operation.

In this design there is a global counter of 32 bits that is used
to compare current time with the timestamps of an event in
order to apply a configurable decay value to a neuron. Since
all neurons need a timestamp in order to reduce the impact
of storing all values, only 8 bits from a 32bit counter are
stored. These 8 bits are selected using a configurable slide
window. Sliding the window allows to change the timing
resolution of timestamps depending on the event rate(Fig

Fig. 3: a) Membrane potential and Timestamps memory
structure. b) Kernel memory structure. Each coloured region
represents memory space for each convolution engine

4). The timestamps memory has the same structure as the
membrane potential memory, storing the 8bit timestamp in
another bank with 16 BRAMs. This value is compared to
the global counter to apply the decay during the convolution
operation.

Fig. 4: Global counter system.

Kernel memory consists of a BRAM where values of each
kernel are stored row by row. Each row contains a maximum
of 7 kernel values with the same resolution as the membrane
potential (8 bits) and a number of 7 rows per kernel, Fig 3.

Each memory bank is organized to be read/written row by
row, reducing the number of memory accesses. The banks are
shared for each convolution engine module, thus a memory
arbiter is needed to coordinate the access.
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Fig. 5: Neuron leakage illustration based on LUTRAMs for a small region of leakage memory.

B. Leakage memories

Leakage is computed and applied to membrane potentials
when a new event arrives to the system. Although there
exists a global counter to apply decay, it is possible that this
counter has overflowed many times. If this situation occurs,
any membrane potential of events that have not been accessed
in a long time should have been reset. Thus, a leakage system
based in LUTRAM has been implemented.

Multiple LUTs in a Slice Memory (SLICEM) can be
combined in various ways to store larger amounts of data.
LUTRAM or Distributed RAM is crucial to many high-
performance applications that require relatively small embed-
ded RAM blocks, such as FIFOs or small register files.

This memory bank consists of 128x128 LUTRAM memo-
ries of two bits each, storing the leakage state for each pixel.
Fig 5 shows how leakage memory works for a 3x3 kernel.
Initially (T0), leakage memory cells have a value of 0 (Fig
5a)). When the global counter produces an overflow (OV),
each cell adds 1 to its content (Fig 5b)). When an input event
(IE) is convolved (C), the content of those rows that have
been accessed during the convolution are reset (Fig 5c)). In
case that another overflow occurs and the cells increase their
values again, those cells that have reached a value of 2 indicate
that a long time has passed from the last access to that event.
Therefore, the next time one of those events will be accessed,
their membrane potential (MP) will be reset( Fig 5d)).

When an overflow occurs, the convolution engine cannot
update the membrane potential memory until the content of
each leakage memory has been updated. However, a convolu-
tion engine can read from memory during the update, reducing
the waiting time. This bank is inside each convolution engine
and is read/written in rows, as the aforementioned memories.

C. Convolution Engine

For each incoming event, a convolution operation is per-
formed by the convolution engine module. This module con-
sists of a state machine that communicates with the memory,

calculating the address to access the membrane potential,
timestamps and kernel rows. The convolution engine requests
access to a memory arbiter, which gives access for reading
or writing data. The main novelty of this engine is that the
membrane potential and kernel values are read and processed
row by row until the entire kernel is applied, reducing the
number of memory accesses.

Algorithm 1 Convolution Engine steps
1: Decay mask step
2: Check timestamps and generate decay mask
3: Convolution step
4: for i = 1:16 do
5: if Leakage Memory[i] == 2 then
6: Reset Membrane Potential
7: else
8: Add Kernel row to MP row and apply decay
9: if Convolution operation result > Threshold then

10: (P,X,Y) → Output FIFO
11: Reset Membrane Potential
12: end if
13: end if
14: Update Timestamps and Leakage Memory
15: end for
16: Write Leakage, Timestamps and Membrane Potential Memories

The convolution operation is divided into two phases for
each row. The decay mask step calculates the difference
between the timestamps of each neuron and the global counter
value. If this difference exceeds a configurable leakage time,
a decay is applied. This process generates a row-mask in
order to apply decay to the correct rows during the convo-
lution operation. The Convolution step updates timestamps
and leakage memory for mask-enabled neurons. Before the
convolution, the corresponding row values of leakage memory
are checked, as was mentioned before. If the leakage value is
2, the membrane potential is reset; otherwise, the convolution
operation is done for that neuron. During the convolution
operation, when applying a kernel value to a neuron, its
membrane potential can reach the threshold. In that case,
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the neuron has to fire, resetting the value of the membrane
potential and storing its address to an output FIFO. These
steps are shown in algorithm 1.

D. Hardware Implementation

The design has been implemented for a Zynq-7100 MMP
platform. This platform contains a PSoC with a Dual ARM R©

Cortex
TM

-A9 MPCore
TM

. The PSoC includes a Kintex-7 FPGA
with 444K logic cells in the same chip. Although this chip is
used, the design is customizable by reducing/increasing the
number of feature maps or the image size to be processed in
order to be implemented for any FPGA chip. The interfaces
of the accelerator are divided into two different buses: an AXI
slave bus [20], which configures the parameters of the system
(leakage time, decay, threshold and kernel values), and an AER
bus [21][22][23], which receives events from an event-based
sensor. A diagram of the whole design is shown in Fig 7.

Utilization Available Percentage
LUT 249660 277400 90%
BRAM 514 755 68%
LUTRAM 36788 108200 34%
FLIP-FLOPS 122056 554800 22%

TABLE I: Resources Table for Kintex 7

The design is configurable through the AXI bus using a
DMA with one channel that reads from the memory. In this
work, both interfaces, AER and AXI, have been simulated
using a C/C++ program which allows to manipulate the signals
of the design.

IV. TEST SCENARIO

The simulation scenario to test this engine was done in
Mentor Graphic Modelsim using System Verilog DPI-C in-
terface. This characteristic of System Verilog allows writing
test benches using C/C++, which facilitates the manipulation
of input/output signals.

As was mentioned before, the design has two different
buses: an AXI-Slave and an AER Input. The C++ code acts
as the master of both buses, writing configuration parameters
and kernel values for the AXI bus, and writing events to
the AER interface. For this experiment, a club card image
from the Poker-DVS database [24] was selected to check the
results after applying convolution kernels. This kind of files are
written in AEDAT[25] format, which represents events with
their corresponding timestamps. These files can be visualized
using programs such as jAER [26].

The output from the system will be saved in a file and
visualized in jAER to verify the behavior of each filter as
shown in Fig. 6.

This test is divided into two parts: in the first part, events are
processed with different kernel sizes, obtaining the processing
time for a convolution engine. However, in CNN odd kernel
sizes are commonly used. With the aim of determining the
correct behavior of the system on a more stressful situation, a
second test using 64 convolution engines was conducted. The
kernels in this test were configured with different Sobel filters

a)

b) c)

Fig. 6: Source Image(a) and convolved image with K1(b) and
K2(c).

to detect rows and columns, as shown in (3). The kernel sizes
in this experiment were 3x3, 5x5 and 7x7.

K1 =

 1 0 −1
2 0 −2
1 0 −1

K2 =

 −1 −2 −1
0 0 0
1 2 1

 (3)

For a more realistic scenario inside a simulation, the design
was tested at the post implementation level. At that level,
each component is mapped into a physical device with their
corresponding delay, thus the time obtained is the closest one
to a real implementation on a chip.

V. RESULTS

For the first scenario, identity kernels were configured in
order to measure the time since an event arrives at the engine
until the system had finished processing this event. The results
obtained for one convolution engine are 0.1 µs to process a
1x1 kernel and 0.7 µs for a 7x7 kernel (Fig. 8). Convolving
one kernel row requires 10 cycles (memory access, pipeline
stages...), for a clock of 10 ns; processing a row takes 0.1 µs.
Therefore, for a size L kernel, the processing time for an event
is 0.1 µs*L.

Despite these values, it occurs sporadically that the global
counter overflows during a convolution. This implies that the
leakage memories need to be updated. As was mentioned
before, if a convolution engine is in write state, it cannot
request memory access until the memory is updated, thus it
has to wait. This case represents the worst situation in terms
of latency. Updating a row of leakage memory requires two

2018 International Joint Conference on Neural Networks (IJCNN)



Fig. 7: Block diagram of the system architecture

clock cycles. Since there are 128 rows, a time of 2,56µs is
needed.

Fig. 8: Processing time for different kernel sizes. The blue line
represents the ideal processing time of an event. The red line
is the average processing time after the computation of the
club card image.

The probability of overflow depends on the configuration
of the global counter and of the kernel size. Even for large
kernels, if the global counter is properly configured according
to the throughput, the probability of an overflow during a
convolution is very small due to the fact that the memory
could be updating while the system is not working, or when
a convolution engine is waiting, the memory arbiter answers.
Although the probability is low, the mean time to process each
of the events from the club image was calculated, giving results
not so far from the best case (0.103µs for 1x1 and 0.71µs for
7x7, shown in Fig 8), demonstrating that the updating time of
leakage memories is insignificant.

In current SCNNs, odd kernels are commonly used and each
convolution layer has more than one feature map. With the aim

of testing a more realistic approach, a second scenario was
prepared. In this scenario, the system was configured with 64
convolution engines with different odd kernel sizes in order to
measure the time to process an event.

Kernel Size Time(µs)
3x3 3.86
5x5 6.4
7x7 8.98

TABLE II: Processing time of different odd kernel sizes for
64 Convolution engines

The DVS retina has a latency around 15-20 µs. Comparing
the sensor latency with one input event latency to be processed
by 64 convolution engines (see Table II), we demonstrated that
for a number of 64 Convolution engines the system is able to
process events in real time using any kernel size.

Although the parameters are properly configured, the num-
ber of spiking events at the output of the system is quite high
for SCNNs. A possible solution to reduce the firing rate of
events is to implement a refractory period for each pixel, so
an event will not fire again until that period is met.

VI. CONCLUSIONS

In this paper, the authors presented an event-based con-
volution system that is able to compute a maximum of 64
convolutions with different kernel sizes, from 1x1 to 7x7. The
design presented improves other SCNN FPGA engines, such
as Zamarreño et. al[27] , in terms of processing time and image
size. Focusing on processing time, as was shown in Table III,
for a kernel size of 11x11, Zamarreño et. al. [27] it takes
about 3 µs, which is the same time that the implementation
presented in this work takes to convolve a layer of 64 feature
map filters of 3x3 at lower latency. It is also important to
highlight the number of adders used for both systems, because
of the fact that it is an important factor in power consumption.
In the design presented in this paper, the convolution engines
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cannot work in parallel due to the fact that memory resources
are being shared. Therefore, the maximum number of adders
match the maximum kernel size row to convolve, which is 7.
However, in Zamarreño’s systems, each convolution module
works in parallel, meaning that for any kernel size, the system
needs a number of 64 adders for 64 parallel modules. This
implies a high impact in computational resources and power
consumption in comparison with the system presented.

Zamarreño et. al. This work
Image Size 64x64 128x128
Kernel max size 11x11 7x7
Convolution Modules 64 64
Frequency (MHz) 120 100
Latency per event(µs) 3(11x11) 0.7(7x7)
Adders 64 7

TABLE III: Comparison table of Spiking Convolution Engines

The work presented is able to process higher images with
64 convolution modules faster than other spiking convolution
engines, being able to process events from neuromorphic
sensors in real time. As future work, the design will be
deployed in an FPGA chip implementing the refractory period
of LIF neurons to reduce the firing rate at the output and
connecting it to a DVS retina.
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