
UNIVERSIDAD DE SEVILLA

DOCTORAL THESIS

Neuromorphic Deep Convolutional
Neural Network Learning Systems for

FPGA in Real Time.

Author:
Ricardo Tapiador Morales

Supervisor:
Dr. Gabriel Jiménez Moreno

Dr. Alejandro Linares Barranco
Dr Ángel F. Jiménez Fernandez

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Robotics and Computer Technology Lab.
Departamento de Arquitectura y Tecnología de Computadores.

http://www.us.es/
http://www.us.es/acerca/directorio/ppdi/personal_13740
https://investigacion.us.es/sisius/sis_showpub.php?idpers=4060
https://investigacion.us.es/sisius/sis_showpub.php?idpers=7665
https://investigacion.us.es/sisius/sis_showpub.php?idpers=11445
http://www.rtc.us.es/
http://www.atc.us.es/




iii

Declaration of Authorship
I, Ricardo Tapiador Morales, declare that this thesis entitled “Neuromorphic Deep
Convolutional Neural Network Learning Systems for FPGA in Real Time.” and the
work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself.

Signed:

Date:





v

UNIVERSIDAD DE SEVILLA

Abstract
Escuela Técnica Superior de Ingeniería Informática.

Departamento de Arquitectura y Tecnología de Computadores.

Doctor of Philosophy

Neuromorphic Deep Convolutional Neural Network Learning Systems for
FPGA in Real Time.

by
Ricardo Tapiador Morales

In this work, it is intended to advance on the knowledge of Deep Learning and
pattern recognition and their hardware implementations, such as hardware
architectures for frame-based and event-based processing paradigms.

First, frame-based vision systems are studied, along with Deep Learning
algorithms for feature extraction in vision sensors, particularly Convolutional
Neural Networks. Based on these studies, an FPGA OpenCL implementation for
real-time frame-based CNN inference is proposed. Additionally, a second CNN
accelerator based on a SoC-FPGA platform called NullHop is presented. Both
designs are analyzed in terms of accuracy, latency, power consumption and area.

Next, biological neuron behaviour and neuromorphic vision sensors are
studied, in order to adapt the CNN algorithm to the spiking domain. With the aim
of inferring Spiking Convolutional Neural Networks, three different spiking
convolution processors are presented. These spiking processors are inspired in
leakage integrate and fire neurons and they perform the convolution operation
with the arrival of events from a neuromorphic vision sensor. The three
convolution processors proposed were tested with different stimuli to determine
their behaviour and measure their performance..

Finally, a new event-based algorithm for feature extraction, called HOTS, was
used to recognize gestures from a neuromorphic vision sensor. The HOTS
algorithm uses a novel concept called time-surface, which represents the
spatio-temporal activity of events to extract features from events. From this
approach, a novel architecture for a VLSI system to infer the HOTS algorithm is
presented with a testbench to characterize the system. In addition, a new memory
model to reduce memory accesses and memory resources consumption was
proposed and tested in a HOTS network.

Lastly, the performance and efficiency of these systems were evaluated. Then,
the conclusions obtained are presented and new features and improvements are
proposed for future works.

HTTP://WWW.US.ES/
https://www.informatica.us.es/
http://www.atc.us.es/




vii

Agradecimientos
El desarrollo de esta tesis, ha sido sin lugar a dudas uno de los retos más difíciles
a los que me he enfrentado. Han sido tres años llenos de experiencias, dificultades
y altibajos, que me han hecho avanzar tanto a nivel profesional como personal. Sin
embargo, he tenido la suerte de contar con personas que me han ayudado en el
camino, motivándome, apoyándome y enseñándome. Estas páginas están dedicada
a esas personas.

Me gustaría empezar agradeciendo a mis directores de tesis, Gabriel Jiménez
Moreno, Alejandro Linares Barranco y Ángel Jiménez Fernández, por ayudarme en
los problemas encontrados a lo largo de la tesis, aconsejándome y guiándome en
cada paso que daba con sus sabios consejos, formándome como científico e
investigador. Agradecer en particular la labor de uno de mis directores de tesis,
Alejandro Linares Barranco por confiar y creer en mí, dándome la oportunidad de
entrar y colaborar en el departamento de Arquitectura y Tecnología de
Computadores donde he vivido incontables experiencias que jamás olvidare.

Agradecer a los miembros del grupo de Robótica y Tecnología de
Computadores por estar a mi lado estos años haciendo de mi lugar de trabajo, un
segundo hogar. Gracias a Manuel Domínguez Morales, Elena Cerezuela, Antón
Civit Balcells, José Luis Sevillano Ramos, Daniel Cascado Caballero, Francisco
Gómez Rodríguez, Lourdes Miró Amarante, Fernando Díaz del Río, Francisco
Luna Perejón junto al resto de miembros del grupo de investigación.

Destacar la suerte de tener unos compañeros de trabajo a los que puedo llamar
amigos, estas líneas van dedicadas a Antonio Ríos Navarro, Juan Pedro Domínguez
Morales y Daniel Gutiérrez Galán. Con los cuales he tenido suerte de compartir
muchas experiencias como estancias de investigación, viajes y alguna que otra
barbacoa. Muchas gracias por vuestro apoyo, habéis sido de gran ayuda. Muchas
gracias al equipo de electrónicos del departamento formado por Alberto Vázquez
Baeza y Juan Manuel Montes, quienes siempre se han prestado a ayudarme y me
han dado su apoyo en todo momento.

En el ámbito personal agradecer a mis amigos Pedro Castañeda Fernández,
Juan Manuel Muñoz Noguera, María Jiménez Fernández, Cristina Santos Serra,
Isabel Maria Beasley Bohorquez, Laura Cano García junto al resto del grupo por las
partidas de juegos de mesa, conversaciones y múltiples salidas que me han
ayudado a despejarme y animarme.

En lo familiar, agradezco a mis abuelos Manuel Morales Guerrero e Isabel
Salguero Becerro, quienes me han cuidado desde pequeño viéndome crecer y
convertirme en la persona que soy ahora.

Mención especial a Narciso Reguera Rodríguez y Dolores Valenzuela Díaz, a
quien tengo el honor de llamarles mis segundos padres, estando junto a mí en los
buenos y en los malos momentos tratándome como si fuera su hijo. Gracias de todo
corazón.

A Natalia Martin Saborido, quien me ha acompañado durante gran parte de
este camino dándome su apoyo, cariño, aportando su gran creatividad a mi vida.
Muchísimas gracias.

Por último, las personas más importantes en mi vida a los que le dedico este
trabajo, mis padres y mi hermana, Ricardo Tapiador Domínguez, María Isabel
Morales Salguero y Cristina Tapiador Morales. Gracias por escucharme y aguantar
mis altibajos, por educarme e inculcarme el valor del esfuerzo y la constancia, las
cuales han sido clave en mi vida. Muchas gracias familia por todo.





ix

Contents

Declaration of Authorship iii

Abstract v

Agradecimientos vii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Neuro-inspired systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Neuromorphic engineering . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Address event representation . . . . . . . . . . . . . . . . . . . . 9

1.3 Artificial Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Vision in Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1.1 Visual System . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1.2 Retina . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1.3 Lateral geniculate nucleus . . . . . . . . . . . . . . . . 10
1.3.1.4 Visual Cortex . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Acquisition of digital images . . . . . . . . . . . . . . . . . . . . 12
1.3.3 Silicon retinas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.4 JAER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.1 History of Deep Learning . . . . . . . . . . . . . . . . . . . . . . 15
1.4.2 State-of-the-art in CNNs accelerators . . . . . . . . . . . . . . . 16

1.4.2.1 Origami accelerator . . . . . . . . . . . . . . . . . . . . 16
1.4.2.2 Snowflake . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.2.3 Eyeriss . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Spiking Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.1 IBM-TrueNorth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.2 NeuroGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.3 SpiNNaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.4 Intel Loihi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.5 DYNAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.6 Spiking Convolutional Neural Networks . . . . . . . . . . . . . 22

2 Objectives and Thesis structure 23
2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Convolutional Neural Network Accelerators 27
3.0.1 Convolution layer . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.0.2 Pooling layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.0.2.1 Max-pooling . . . . . . . . . . . . . . . . . . . . . . . . 28
3.0.2.2 Average-pooling . . . . . . . . . . . . . . . . . . . . . . 29



x

3.0.3 Dropout layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.0.4 Fully-connected layer. . . . . . . . . . . . . . . . . . . . . . . . . 29
3.0.5 ReLU layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.1 Platform model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Execution model . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.3 Memory model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.4 CNN inference using Altera OpenCL . . . . . . . . . . . . . . . 32
3.1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 NN-X architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 NullHop Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 NullHop Architecture . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 NullHop FPGA implementation . . . . . . . . . . . . . . . . . . 38

3.3.2.1 AXI-INTERFACE . . . . . . . . . . . . . . . . . . . . . 39
3.3.2.2 Implementation Results . . . . . . . . . . . . . . . . . . 39
3.3.2.3 Real-time CNN inference . . . . . . . . . . . . . . . . . 40

4 Spiking Convolution Accelerators 43
4.1 Spiking convolution layers . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Spiking convolution . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Subsampling layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Leaky integrate-and-fire convolution processor V1 . . . . . . . . . . . . 45

4.3.1 Leaky integrate.and-fire neuron model for V1 convolution
processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.2 Spiking convolution processor V1 architecture . . . . . . . . . . 46
4.3.2.1 Membrane potential, leakage timestamps and kernel

BRAM banks . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.2.2 Leakage system . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2.3 Convolution Engine . . . . . . . . . . . . . . . . . . . . 49

4.4 Leaky integrate-and-fire convolution processor V2 . . . . . . . . . . . . 50
4.4.1 Leaky integrate-and-fire neuron model for V2 convolution

processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.1.1 Refractory period mechanism . . . . . . . . . . . . . . 50
4.4.1.2 Convolution Engine V2 . . . . . . . . . . . . . . . . . . 52

4.5 Leaky integrate-and-fire convolution processor V3 . . . . . . . . . . . . 54
4.5.1 Layer mask selector module . . . . . . . . . . . . . . . . . . . . . 54
4.5.2 Cycle output system . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Frame-based to event-based image conversion . . . . . . . . . . . . . . 55
4.6.0.1 Scan algorithm . . . . . . . . . . . . . . . . . . . . . . . 56
4.6.0.2 Random algorithm . . . . . . . . . . . . . . . . . . . . 56
4.6.0.3 Bitwise algorithm . . . . . . . . . . . . . . . . . . . . . 56

4.7 Hardware implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.8 Benchmark scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8.1 Slow-Poker processing test . . . . . . . . . . . . . . . . . . . . . 58
4.8.2 Fast-dot processing test . . . . . . . . . . . . . . . . . . . . . . . 60
4.8.3 Analysis and comparison . . . . . . . . . . . . . . . . . . . . . . 62

4.9 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



xi

5 Pattern Recognition Based on Time Surfaces in Real Time 65
5.1 Hierarchy of the time surface algorithm . . . . . . . . . . . . . . . . . . 66

5.1.1 Time surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.2 Hierarchical time surface network . . . . . . . . . . . . . . . . . 67

5.2 FPGA HOTS accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.1 Time surface generator module . . . . . . . . . . . . . . . . . . . 69
5.2.2 Euclidean distance estimator . . . . . . . . . . . . . . . . . . . . 70

5.2.2.1 Difference distance computation module . . . . . . . . 71
5.2.2.2 Babylonian square root module . . . . . . . . . . . . . 71
5.2.2.3 Non-restoring square root module . . . . . . . . . . . 71

5.2.3 Histograms integration and compare modules . . . . . . . . . . 73
5.2.4 Hardware implementation . . . . . . . . . . . . . . . . . . . . . 74
5.2.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.5.1 Pattern recognition test . . . . . . . . . . . . . . . . . . 75
5.2.5.2 Performance test . . . . . . . . . . . . . . . . . . . . . . 77

5.2.6 Comparison and discussion . . . . . . . . . . . . . . . . . . . . . 79
5.3 Event-based time configurable memory . . . . . . . . . . . . . . . . . . 80

5.3.1 Memory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.2 VLSI implementation . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.2.1 Sequential memory model . . . . . . . . . . . . . . . . 82
5.3.2.2 Parallel read memory model . . . . . . . . . . . . . . . 83

5.3.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.3.1 One-layer experiment . . . . . . . . . . . . . . . . . . . 83
5.3.3.2 Multi-layer experiment . . . . . . . . . . . . . . . . . . 85

5.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Conclusions and Future works 89
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3 Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography 95





xiii

List of Figures

1.1 Neuronal model drawn by Santiago Ramón y Cajal. . . . . . . . . . . . 6
1.2 Biological neuron structure. . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Diagram of a spike generated by a neuron. . . . . . . . . . . . . . . . . 7
1.4 AER protocol diagram. Image taken from (Liu et al., 2014) . . . . . . . 9
1.5 Neural vision system structure. . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 The world’s first photograph (left) and a photograph of the Hubble

telescope (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 ATIS operation principles. When a pixel’s luminosity change reaches

a given threshold (a), it produces a visual event with an (x, y) address
and a polarity, which is either ON or OFF (b). . . . . . . . . . . . . . . . 14

1.8 jAER capture of DVS sensor events. . . . . . . . . . . . . . . . . . . . . 15
1.9 Origami accelerator architecture. Image taken from (Cavigelli and

Benini, 2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.10 Eyeriss accelerator architecture. Image taken from (Chen et al., 2017). . 18
1.11 IBM TrueNorth architecture. Image taken from (Akopyan et al., 2015). 19
1.12 Spinnaker platform layout. Image taken from (Yousefzadeh et al., 2018). 20
1.13 Intel Loihi core structure. Image taken from (Lin et al., 2018). . . . . . . 21
1.14 DYNAP platform layout. Image taken from (Moradi et al., 2018). . . . 21

3.1 Max-pooling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Avg-pooling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 OpenCL platform model. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 OpenCL index space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 OpenCL device memory model. . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 LeNet5 network architecture. . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 LeNet5 OpenCL implementation. . . . . . . . . . . . . . . . . . . . . . . 33
3.8 Input/output data sequencing by rows in a CNN accelerator. . . . . . 35
3.9 NN-X architecture. Image taken from (Gokhale et al., 2014) . . . . . . . 35
3.10 Sparsity VGG19 (left) and GoogleNet (right). . . . . . . . . . . . . . . . 36
3.11 Sparsity map generation. Image taken from (Aimar et al., 2018). . . . . 37
3.12 Sparsity map streams. Image taken from (Aimar et al., 2018). . . . . . . 37
3.13 NullHop architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.14 NullHop FPGA power consumption. . . . . . . . . . . . . . . . . . . . . 40
3.15 Roshambo CNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.16 Block diagram of the NullHop test scenario. . . . . . . . . . . . . . . . . 41
3.17 Roshambo timing analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Example of event sub-sampling. The input event is shifted to the
right, dividing its value by 2. . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 LIF behaviour with several input events (IE). . . . . . . . . . . . . . . . 45
4.3 Convolution processor V1 schematic. . . . . . . . . . . . . . . . . . . . . 46
4.4 Example of BRAM access. . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Leakage counter mechanism. . . . . . . . . . . . . . . . . . . . . . . . . 48



xiv

4.6 Leakage LUTRAM mechanism. . . . . . . . . . . . . . . . . . . . . . . . 49
4.7 LIF behaviour with Refractory period. . . . . . . . . . . . . . . . . . . . 51
4.8 Refractory LUTRAM mechanism. . . . . . . . . . . . . . . . . . . . . . . 52
4.9 Kernel memory structure and row generation for convolution operation. 53
4.10 Diagram of the whole computation, with both mask and convolution

steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.11 Parameter selection using the Layer Mask for two convolution

engines of different layers. . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.12 Convolution processor V3 schematic. . . . . . . . . . . . . . . . . . . . . 55
4.13 From left to right: Original image and converted event-based images

using Scan, Random and Bitwise algorithms. . . . . . . . . . . . . . . . 56
4.14 Experimental hardware setup. . . . . . . . . . . . . . . . . . . . . . . . . 58
4.15 Processing time of each architecture with 64 convolution engines

enabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.16 Input event rate of each convolution processor. . . . . . . . . . . . . . . 59
4.17 Slow-Poker convolution integrated during a period of 5-10 ms. . . . . 60
4.18 Fastdot input events comparison with the output from convolution

processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 HOTS layer processing workflow. . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Example of HOTS histograms. Image taken from (Lagorce et al., 2017). 68
5.3 Time surface generator module. . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Euclidean distance estimator module. . . . . . . . . . . . . . . . . . . . 70
5.5 Non-restoring schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.6 Histograms generator and comparator module (HGCM). . . . . . . . . 73
5.7 F-HOTS global architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.8 Hands gestures from a to g: Left, Right, Hello Hand, Up, Down, Select. 75
5.9 Power consumption of FPGA components for each bit resolution. . . . 77
5.10 Left axis: Processing time per event with different radius. Right axis:

Mega events per second of evolution for each different radius. . . . . . 78
5.11 Left axis: Mops/s performed with different radius, with frequency of

100 MHz. Right axis: memory accesses performed. . . . . . . . . . . . 79
5.12 Number of events in windows of 5ms (blue) and maximum stored

events in a memory of 2048 addresses (orange). . . . . . . . . . . . . . 80
5.13 Multi-layer HOTS implementation composed of 3 layers. Image taken

from (Lagorce et al., 2017) . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.14 Event-based timing memory workflow. . . . . . . . . . . . . . . . . . . 82
5.15 Parallel read memory size vs classification error. . . . . . . . . . . . . . 83
5.16 FPGA latency and throughput with parallel read memory

(discontinued line) and RAM memory (continuous line). . . . . . . . . 84
5.17 FPGA memory access of parallel read memory (orange line) and RAM

memory (blue line) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.18 Total memory consumption of parallel memory with memory

consumed by RAM memory for DAVIS 240c and ATIS sensors. . . . . 86



xv

List of Tables

1.1 Comparison between a computer system and the nervous system. . . . 8

3.1 Altera OpenCL results for each scenario; no parallelism, unroll and
simd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Comparison of CNN accelerators. . . . . . . . . . . . . . . . . . . . . . 38
3.3 NullHop FPGA resources. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Convolution processor architecture resource consumption. . . . . . . . 57
4.2 Comparison between event-based convolution processors. . . . . . . . 62

5.1 PS + PL resource utilization for 16-bit resolution. . . . . . . . . . . . . . 75
5.2 Accuracy comparison with different numerical precision. . . . . . . . . 76
5.3 Programmable logic resources as a function of numerical precision. . . 76
5.4 Properties of HOTS layers used in this experiment. . . . . . . . . . . . . 85
5.5 Zynq-7100 MMP FPGA (xc7z100-2) resources of each memory model

for a 128 position and 64 bit width. . . . . . . . . . . . . . . . . . . . . . 86

6.1 Event-driven vs frame-driven. Table taken from (Farabet et al., 2012). . 89





xvii

List of Abbreviations

AER Address Event Representation
ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
ATIS Asynchronous Time-based Image Sensor
AVPT Average Processing Time
AXI Advanced eXtensible Interface
BRAM Block Ram Memory
CCM Computer Core Module
Chsum Channel Sum
CMOS Complementary Metal Oxide Semiconductor
CNN Convolutional Neural Network
ConvNet Convolutional Neural Network
CU Computer Unit
DSP Digital Signal Processor
DVS Dynamic Vision Sensor
EDE Euclidean Distance Estimator
EPSP Excitatory Postsynaptic Potential
FPGA Field Programmable Fields Arrays
GPU Graphics Processing Unit
HGCM Histograms Comparator Module (HGCM)
HPC High Performance Computing
HOTS Hierarchy of Time Surfaces
IDP Input Decoding Processor
IE Input Event
INI Institute of Neuroinformatics of Zurich
IPSP Inhibitory Postsynaptic Potential
LC Leakage Counter
LGN Lateral Geniculate Nucleus
LIF Leakage Integrate and Fire
LLM Leakage LUTRAM Memory
LM Leakage Mask
LTB Leakage Timestamp Bank
LUTRAM LookUp Table RAM
LUT LookUp Table
MLS Layer Mask Selector
MPB Membrane Potential Bank
NTH Convolution Identification
NTH Negative Threshold
PCI Peripheral Component Interconect
PE Processing Elements
PL Programmable Logic
PRE Pooling ReLU Encoding Module
PS Processing System



xviii

PTH Positive Threshold
PT Processing Time
RAM Random Access Memory
RCT Refractory Counter Time
RC Refractory Counter
RLM Refractory LUTRAM Memory
RM Refractory Mask
ROI Region of Interest
RPV Refractory Period Value
RRAM Resistive Random Access Memory
RTB Refractory Timestamps Bank
RTC Robotics and Technology of Computers Lab
SCNN Spiking Convolutional Neural Networks
SC Spatial Contrast
SIMD Single Instruction Multiple Data
SLICEMEM Slice Memory
SoC System on Chip
SoP Sum of Products
SRDP Spike Rate Dependent Plasticity
STDP Spike Timing Dependent Plasticity
TC Temporal Contrast
TDV Timing Diference Value
UT Update Time
VLSI Very Large Scale Integration



xix

Dedicated to those who have supported and helped me
throughout my life.





1

Chapter 1

Introduction

"Nothing is stronger than an idea
whose time has come."

Victor Hugo

Humans have searched for artificial solutions to solve different problems since
their origin. From sea navigation in ancient times to the recent space conquest,
humankind has adapted to the environment and evolved with it. Several inventions
were inspired in how nature solves complex tasks in an efficient way, in order to use
similar mechanisms as seen in nature with the aim of solving all sorts of problems.
An example of this inspiration can be observed in inventions such as the wings of
an airplane, which are inspired by birds. Curiosity for the unknown has opened
new paradigms and developed smart solutions that make our life easier and better,
bringing humankind to new areas of knowledge.

The development of sensors that collect data in real time from the environment
has become one of the most important advances, since these sensors provide
precise and useful information. Several research fields are focused on using the
information given by image or audio sensors with the aim of providing machines
with intelligence to solve complex problems efficiently, with high precision and in
an autonomous way.

This kind of advances can be seen in factory robots that perform multiple risky
tasks repetitively along an assembly line, with enough intelligence to work in an
autonomous way. However, these advances are not limited to robotics. In recent
years, several electronic devices, such as smartphones, can extract features from our
photos with a low percent of error, or reduce the ambient sound when we receive
a phone call. Currently, the tendency in the electronics market is the development
of smart devices with any kind of intelligence that helps us with several daily tasks,
from a smart speaker, which can place an order to a supermarket, to autonomous
driving cars.

There exist several learning techniques in the literature; one of the most used is
artificial neural networks (ANN). This kind of network consists of a group of
neurons connected to each other in order to generate a specific output from an
input stimulus. In recent years, these neural networks have become increasingly
popular and several applications can be found in the literature. Most of the
problems to be solved by this kind of algorithm are related to pattern matching and
pattern recognition, i.e., predicting an output from input data. Within this
processing paradigm, there are different algorithms which take inspiration from
this concept, such as convolutional neural networks (CNN), which are ideal to
extract semantic information from input data, and spiking neural networks (SNN),
which take inspiration from the behaviour of biological neurons.
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In the 1980s, a new research field called Neuromorphic Engineering emerged.
The purpose of neuromorphic engineering is to study the biological and inner
systems of neural processing with the aim of designing analog, digital or
mixed-signal systems that can perform tasks, replicating similar behaviours and
properties of biological neurons. One of the goals of Neuromorphic Engineering is
to explain how our brain is able to learn and perform complex tasks with high
efficiency. From this approach, several sensors and systems have been developed,
such as vision sensors (Lichtsteiner, Posch, and Delbrück, 2008, Posch, Matolin, and
Wohlgenannt, 2011, Serrano-Gotarredona and Linares-Barranco, 2013), auditory
sensors (Yang et al., 2016, Jiménez-Fernández et al., 2017), robotics systems
(Gomez-Rodriguez et al., 2007, Gómez-Rodríguez et al., 2016, Perez-Peña,
Linares-Barranco, and Chicca, 2014, Rea, Metta, and Bartolozzi, 2013),
neuromorphic processing chips (Akopyan et al., 2015, Furber et al., 2013, Schmitt
et al., 2017, Moradi et al., 2018) and sensor fusion (John C Pearson, 1988, Chan, Jin,
and Schaik, 2012), among others.

The present work is focused on neuro-inspired processing for artificial vision,
and its aim was the development of bio-inspired systems capable of extracting
patterns from input scenes in an autonomous and efficient way. The processing of
images consists of two different phases: first, the nature of input stimuli is studied,
analyzing and extracting the features; then these features are used to classify
different images, searching for similarities between the features extracted in the
previous phase. These phases can be found in the natural behaviour of living
beings that learn patterns from an input stimulus, and apply this knowledge to
recognize objects with the same properties.

In order to replicate this phenomenon, the aim of this work was to study
different learning methods for frame-based processing and event-based processing.
Regarding frame-based processing, the author studied the implementation of
CNNs in embedded systems to perform pattern recognition in real time. Then, the
same concept was adapted to event-driven processing. Although it can appear that
these two concepts are similar, there is a great difference, since event-driven
processing is inspired by the structure and functioning of the brain, where the
information is encoded in spikes (events), which are processed in parallel by
massive layers of neurons interconnected via synapses. In order to implement
spiking convolution networks, a novel spiking convolution processor was
developed in this work to infer this kind of network.

Finally, apart from CNNs in both paradigms, a novel pattern recognition
algorithm for event-based processing was studied. These classifiers extract specific
patterns from the input scene using different mechanisms and methods.

1.1 Motivation

Pattern recognition systems are needed for many applications, such as object
tracking, text recognition, autonomous driving, speech recognition, helping people
with disabilities, or in healthcare and medical applications, in order to detect
different pathologies.

Real-time vision recognition is one of the most important challenges in recent
years, since the number of frames per second to process must be high enough to
detect changes in the actual scene. This fact is critical in some applications, such as
autonomous driving, where a delay can cause an accident. Most of current pattern
recognition algorithms for audio or image processing are deployed in huge server
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racks since these algorithms perform a large number of operations. Therefore, the
development of hardware systems capable of deploying this kind of algorithm with
low latency and power consumption has recently become one of the main interest
for the industry.

Currently, several pattern recognition accelerator systems for frame-based
vision can be found in the literature. Most of these systems are focused on
accelerating one kind of network called convolutional neural networks (CNN).
These networks have become quite popular due to their high accuracy and easy
unsupervised training. Although CNN accelerators have demonstrated good
results in terms of latency and power consumption, the number of operations is still
high compared to other processing paradigms where these algorithms can be
adapted, such as Neuromorphic Engineering. In Neuromorphic Engineering,
information is encoded in spikes, which represent pulses of a neuron. Using this
concept, several neuromorphic vision sensors have been developed. The main
characteristic of these sensors is that they only detect changes of luminosity. In
other words, only those pixels whose luminosity have changed are reported. This
fact can reduce the number of operations performed in CNNs, since only a few
numbers of pixels are processed, instead of scanning all the pixels of a scene, even if
the scene has not changed, as frame cameras do. Based on this kind of processing,
the same concept of CNNs has been adapted to it. These networks are called
Spiking Convolutional Neural Networks (SCNN).

The aim of this thesis was focused on the development of different digital
systems capable of deploying this kind of algorithm in real time for frame-based
and event-based processing paradigms. This work presents three different
architectures for very large integration systems (VLSI). The first one is a CNN
accelerator for frame-based processing, followed by an event-based convolution
processor and its applications; the last architecture is a novel hardware
implementation of a new event-based pattern recognition algorithm known as
HOTS (Lagorce et al., 2017).

On the personal side, it is important to highlight the author’s inquisitiveness for
the development of new digital hardware architectures to deploy learning
algorithms based on the biology of the brain in real time. The architectures
developed can be used in several fields such as robotics navigation, or image
recognition tasks.

This thesis is part of the research degree at the Robotics and Computer
Technology group (RTC, TEP-108). This work is focused on and aligned with
different tasks that are part of national and international research projects, which
have served as funding. The work of the author has been supported by a
"Formación de Personal Investigador" Scholarship from the University of Seville, to
which the author expresses his gratitude. These projects are:

• NPP international project: Neuromorphic Processor Project.

• COFNET national project: Sistema Cognitivo de Fusión Sensorial de Visión y
Audio por Eventos (TEC2016-77785-P).

• MINERVA excellence project: Mota-Infraestructura de Sensado y Transmisión
Inalámbrica para la Observación y Análisis de la Pauta de Animales Salvajes o
en Semilibertad (P12-TIC-1300).

The following sections present a detailed introduction about the history and the
main scientific fields that this thesis comprises, starting with neuro-inspired systems,
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followed by artificial vision and deep learning processing, and ending with spiking
neural networks.

1.2 Neuro-inspired systems

Since the origin of life, living beings have adapted to different kinds of
environments. Evolution throughout millions of years has allowed several species
to change their habitat, colonizing new ones in order to survive. These species have
adapted their physiology to a new environment in which they did not use to live. In
addition, this evolution is intrinsic to their genetic code, evolving over the years to
changes in their environment and transmitting these adaptation properties to their
descendants. Thanks to this natural evolution, there is a great diversity of species.

Along history, engineers and scientist have studied the nature of living beings to
take inspiration for developing efficient solutions to solve complex problems; this
approach was the origin of bio-inspired systems. Nature has demonstrated to be
one of the best approaches in several fields, such as professional swimsuits, which
are based on shark skin, or in electronics, such as the sonar, which is inspired by the
sounds produced by bats.

In recent decades, there has been a great revolution in society and in the industry,
with the appearance of computer systems and robotics. In the industry, it can be
observed that most of the manufacturing companies have incorporated robots that
are capable of performing several complex and repetitive tasks efficiently. This fact
has allowed satisfying the demand for products in society, since the time to obtain
a product from the assembly line has been reduced. However, robots are limited in
actions, since they only react to a limited number of instructions in a small controlled
environment, with high power consumption and the need for supervision from a
person. On the other hand, wildlife is capable of adapting to new environments,
as was previously mentioned, learning from it, collaborating with other members,
being conscious of their limitations, such as the need for resting and eating, without
any kind of supervision; therefore, wildlife is intelligent and autonomous.

Nowadays, computer systems have evolved considerably, reaching a high
computation rate that allows them to perform several complex tasks. This
computer evolution was predicted by Gordon Moore (Moore, 2006) who said that
the number of transistors will be duplicated every two years. However, the rate of
progress in computers increases, whereas robots do not evolve at the same rate.
Although algorithms to control robots are executed on high-end computers, this
fact poses several problems: the power consumption of high-end computers
reduces battery life; robots are limited to some instructions given an environment
and an algorithm, making it impossible for them to learn and evolve with their
environment; and the space limitation due to the fact that the connection latency
between the robot and the computer must not affect the programmed task.

Maybe we should solve the problem with a different perspective or paradigm
that allows robots to work in an autonomous way with low power consumption.
For instance, we should wonder how nature is able to process information in such
low latency without much power consumption; furthermore, we must wonder how
humans are able to learn from their experiences. We should consider the possibility
that the current algorithms or computer-based systems are not the best options to
process information. Therefore, the field of robotics needs new computational
paradigms that allow robots to evolve in such a way that they can learn and adapt
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to new environments; in other words, provide them with similar cognitive
properties as those observed in nature.

It is difficult to answer these questions, most of them are currently unanswered.
However, there is one thing that most of the scientific community accepts: the
human brain is the most complex processing system in the world and we should
investigate the way in which it processes information. Taking inspiration from how
the brain processes information, and by adapting the brain’s behaviour in order to
develop new solutions that can improve the performance of current processing
systems, the concept of neuro-inspired system emerged. Neuro-inspired systems
gather a set of devices that recreate how nervous systems encode information. This
research field has grown in recent years, thanks to the work of neuromorphic
engineers. Since general-purpose computers have come to a standstill nowadays
(Elie, Forbes, and Strawn, 2017, Xiu, 2019), perhaps it is time to have a look at the
brain to develop new specific solutions that can improve computer performance.

In this section, the concept of neuromorphic engineering is explained, from its
history to its principles.

1.2.1 Neuromorphic engineering

The concept of neuromorphic engineering appeared in 1980, created by Carver
Mead’s group at the California Technology Institute (Caltech), with the aim of
emulating and understanding the behaviour of neurons of the nervous system
through their implementation in analog circuits (Mead, 1989, Mahowald and
Douglas, 1991). Although the first development in neuromorphic engineering was
implemented using analog technology (Liu et al., 2002), in recent years several
hardware implementations of bio-inspired neural system architectures can be
found in analog, digital or mixed signals. Apart from hardware implementations,
the field of neuromorphic engineering has grown considerably in recent years,
bringing researchers from other fields, such as biology, physics, mathematics or
computer sciences, among others.

As a consequence of the growth of the neuromorphic community, several
hardware platforms to train and deploy bio-inspired neural networks with
hundreds and millions of neurons can be found (Furber, 2016b, Indiveri, Chicca,
and Douglas, 2006). Additionally, several sensors with a high dynamic range based
on this approach have been developed to be used in high-performance applications
(Yang et al., 2016, Serrano-Gotarredona and Linares-Barranco, 2013, Posch, Matolin,
and Wohlgenannt, 2011, Jiménez-Fernández et al., 2017).

Currently, there are two international workshops, one located in Telluride
(United States) and another one for European researchers in Cappocaccia (Italy).
These workshops allow researchers around the world to meet up in a common
place, where they can share their advances with other researchers of the
community, working together to develop and improve new neuro-inspired systems
that process spiking information. In order to understand how neuromorphic
platforms and devices work, it is necessary to understand the origin of
neuroscience, which is the base of these solutions.

Continuously, our brain is processing information about the environment
obtained thanks to our senses. The processing of this information allows us to do
several actions, such as interacting with other persons, recognize food or identify a
sound. These tasks are performed in a fast and simple way, although the structure
of the brain is so complex at that point that currently there is a great part of it that is
still unknown.
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FIGURE 1.1: Neuronal model drawn by Santiago Ramón y Cajal.

The human brain is composed of a large amount of cells, called neurons. There
are around 86 billion neurons of different types in our brain. The type of a neuron
defines how it interacts with other neurons, the response against a stimulus and
its purpose in a group. Camillo Golgi, an Italian scientist, stated that the nervous
system had a structure of a fixed interconnected network of neurons; this theory is
known as the reticular neuron theory. However, a Spanish scientist, Santiago Ramón
y Cajal (Cajal, 1952), who received the Nobel prize in medicine, demonstrated that
the reticular theory was not true, since there exists a small space between neurons
of 20-30nm, and that they connect to each other through synapses. This theory is
called the neural theory and it was demonstrated with the development of modern
microscopes. Fig. 1.1 shows one of the drawings of Santiago Ramón y Cajal, where
the structure of a biological neural network is represented.

The amazing fact of neural architecture is that it only consumes between 10 and
40 Watts of energy. The morphology of a neuron consists of three parts: soma,
dendrites, and axon; and they are self-organized. The dendrites are the input of a
neuron. They receive an input stimulus from another neuron and they send this
stimulus to the soma. The soma is the central processing unit of a neuron; it
processes an input from the dendrites in a non-linear way. The input stimulus
modifies the membrane potential of the soma and, if a threshold is reached, the
soma produces and output stimulus, sending it through the axon, which acts as the
"output of a neuron". Fig. 1.2 shows the structure of a biological neuron.

The connection between two neurons is known as the synapse, and it has
complex physiological characteristics (Johnston and Wu, 1995). In 1939, Hodging
and Huxley (Hodgkin and Huxley, 1939) discovered that neurons communicate
with each other by means of electric pulses, studying how their potassium and
sodium channels behaved. The changes in the membrane potential of the dendrites
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FIGURE 1.2: Biological neuron structure.

produce these electric pulses called action potential or spikes.
A neuron’s membrane potential usually starts at a value of -70 mW, called resting

potential. If the opening of the ion channel results in a net gain of positive charge
across the membrane, the latter membrane is said to be depolarized, as the potential
comes closer to zero. This process is called excitatory post-synaptic potential (EPSP),
as it brings the neuron’s potential closer to its firing threshold (about -55 mV). On the
other hand, if the opening of the ion channel results in a net gain of negative charge,
this moves the potential further from zero and is referred to as hyperpolarization.
This process is called inhibitory post-synaptic potential (IPSP), as it changes the
charge across the membrane to be further from the firing threshold. Finally, the
neuron is not able to produce a new spike until its membrane potential returns to
the resting potential; this period of time is called the refractory period. Fig. 1.3
shows the diagram of a spike generated by a neuron.

FIGURE 1.3: Diagram of a spike generated by a neuron.

Although the Hodgkin–Huxley membrane potential model of a neuron is
accepted by most neuroscientists, there are several hypotheses on how neurons
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represent information. One of the most accepted hypotheses in the neuromorphic
engineering community is the one presented by Horace Barlow (Barlow, 1961), who
proposed a model in which neurons communicate through a train of spikes using
pulse frequency modulation (Maass and Bishop, 1999, Westerman, Northmore, and
Elias, 1997). Other methods to encode information employ the inter-spike interval
(Reich et al., 2000), or the reset time, where the most important events are those
which were emitted first (Thorpe, Brilhault, and Perez-Carrasco, 2010).

One of the main properties of spiking representation is that information is
obtained in a continuous way, instead of a discrete way. Since the information is not
sampled, each neuron transmits a spike when it is needed, avoiding redundant
information.

TABLE 1.1: Comparison between a computer system and the nervous
system.

Computer Neural System
High speed global clock signal. Asynchronous without a global clock signal

Deterministic behaviour Stochastic behaviour.

High resolution information sampled at a
constant rate.

Low resolution, but adaptive. No sampling
rate; the information is encoded within the

frequency of the spikes.

Centralized computing, or slightly
distributed.

Each neuron processes a small part of the
information. The processing is highly

distributed and massively parallel.

It needs memory for the algorithm and to
store the data.

The information is encoded within the flow of
spikes. The morphological characteristics and

the interconnections of each neuron is the
algorithm itself.

Table 1.1 shows a qualitative comparison between a computer system and the
nervous system. A computer is synchronized by a global clock signal, which allows
the computer to perform the task in each rising or falling edge of a clock; on the
other hand, the nervous system does not have synchronized mechanisms, since
neurons communicate and work in an asynchronous way. Furthermore, computers
follow a deterministic sequence of instructions, whereas the nervous system has a
stochastic behaviour, depending on their reaction to their dynamic probabilistic
models. Current computer systems work with high-resolution information at a
constant rate, whereas in neurons it is the opposite. Although neurons work with a
low resolution compared with computers, the information is encoded in the
frequency of the spikes transmitted, adapting this frequency to the input stimulus.
The nervous system is a complex network, where each neuron processes a small
part of the information, which allows neurons to not depend on other neurons,
working on a massively parallel and distributed way. Although current computer
systems allow parallel computing, there always exists an element which is in
charge of synchronizing the execution, thus centralizing the computation.
Furthermore, computer systems need memory to execute an algorithm and to store
the data. However, in neural systems, the information is encoded in the flow of the
spikes between neurons, thereby the morphological properties of neuron
interconnections constitute the algorithm.
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1.2.2 Address event representation

One of the goals of neuromorphic engineering is to take inspiration from the
nervous system in order to find solutions to problems. However, the nervous
system is composed of a vast number of neurons, where each of the 105/mm3

neurons could be connected to other 10 thousand, generating a density of
connections of up to 4 km/mm3 (Braitenberg and Schüz, 2013); due to the physical
limitation of VLSI technology, it is not possible to implement such connectivity in a
VLSI system. Although a single neuron has a firing rate of 1-10 Hz, the frequency of
a group of neurons firing at the same time can increase to KHz or MHz. Current
digital circuits are faster and can support that firing rate. In order to implement
neuron communications, by making use of the high bandwidth of VLSI, a protocol
that multiplexes information in time was developed, using one channel and
assigning an address to each neuron. This protocol is called address-event
representation (AER) and it was first presented in 1991 (Sivilotti, 1991, Lazzaro
et al., 1993, Boahen, 2000, Liu et al., 2014). AER is an asynchronous and digital
protocol to send/receive spikes between neuromorphic chips (Mahowald, 1992).

FIGURE 1.4: AER protocol diagram. Image taken from (Liu et al.,
2014)

Fig. 1.4 shows a diagram of the AER protocol during the communication of two
AER systems. AER proposes a unique multiplexed high bandwidth bus, where each
neuron is represented by an address. When a neuron produces a spike, also known
as AER event, an arbiter sends the address of that neuron. An address can represent
the position of a pixel in a vision sensor or an audio channel in an auditory system.
When the receptor sensor receives the AER event, the sensor is in charge of decoding
the address, to send the spike to a group of receptive neurons. Thus, the neurons are
connected virtually, through a common multiplexed bus.

There are two main ways of implementing the AER communication protocol:
parallel and serial protocols. In general, the parallel protocol is widely used in
neuromorphic engineering. In this work, the parallel implementation used in the
European project CAVIAR: Convolution AER Vision Architecture for Real-Time
(IST2001-34124) was used (Serrano-Gotarredona et al., 2009). On the other hand,
serial protocols for AER communication are under research and being tested (Dorta
et al., 2016, Fasnacht, Whatley, and Indiveri, 2008, Yousefzadeh et al., 2017), and
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these will replace the parallel protocol in the future, as it happened in computer
systems.

The most commonly used AER protocol consists of a four-step handshake
protocol that guarantees the correct communication between the sender and the
receiver. It is composed of three signals: data, request and ack. The sender asserts
the request signals to inform the receiver that there is an address ready to be sent.
In the case that the receiver is ready to read the event, the receiver asserts the ACK
signal. Finally, the sender deactivates the request signal, then the receiver also
unsets the ack signal to end the communication.

The AER protocol was the main communication protocol used throughout this
work to receive and process information from vision sensors.

1.3 Artificial Vision

1.3.1 Vision in Biology

1.3.1.1 Visual System

Vision is one of the most important senses, and this is reflected by its complexity and
by the large part of the mammalian brain cortex that it occupies. Neuroscientists
discovered that 32 different parts of the brain process visual information (Cela-
Conde et al., 2004), 25 of which work directly in vision processing tasks, whereas
the other 7 perform sensory fusion and motor system tasks.

From the retina to the lateral geniculate nucleus, and from it to the successive
layers of the brain cortex, there are neurons that process complex stimulius. For
instance, in the primary visual cortex (V1), there is a set of neurons that reacts to the
orientation of the input visual stimulus (Krug, 2012).

The visual system does not follow a sequential and hierarchical scheme.
Information, such as the colour or shape of objects, is processed in parallel, i.e.,
routing the information through parallel routes to be processed by different parts at
the same time.

1.3.1.2 Retina

The retina is the main part where the vision system starts. One of the first cell
layers in the retina is the photo-receptor cell which detects spatio-temporal changes
in brightness and darkness. Apart from the photo-receptor layer, inside the retina,
there are several kinds of cells. Although, two types, called M and P, make up 90% of
the retina. M cells are sensitive to high spatial frequencies, reacting slowly,. and they
are the beginning of the parvocellular route, which is related to colour and details.
On the other hand, P cells are sensitive to low spatial frequencies, reacting quickly
to the input stimulus, and they are the beginning of the magno route, related to
movement and contour.

1.3.1.3 Lateral geniculate nucleus

The lateral geniculate nucleus (LGN) is the intermediate point between the retina
and the visual cortex. Axons from ganglion cells connect to each other, composing
the optical nerve. Nerves from both eyes join together to make the optic chiasma.
At this point, internal axons from retinas interconnect and they continue until they
reach the LGN. Thus, both hemispheres have information from both retinas.
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FIGURE 1.5: Neural vision system structure.

The LGN is composed of sets of neurons distributed in 6 layers that process
information from both retinas. Layers 2,3,5 process the information of the retina
at the same position as the LGN, whereas layers 1,4,6 process the information of the
retina of the other side. The LGN follows the same organization as the ganglion
cells in the retina. The LGN follows the same organization as the ganglion cells in
the retina. M cells are projected in layers 1 and 2; on the other hand, P cells are
projected in layers 3,4,5,6. This is the principle of binocular vision (Khan, Wadhwa,
and Bijlani, 1994).

1.3.1.4 Visual Cortex

The cells of the LGN are projected into the visual cortex. The visual cortex is the area
of the brain in charge of processing the visual stimuli, and it is mainly composed of
5 interconnected areas: V1, V2, V3, V4 and V5. In these areas there are two routes:
"what" and "where"; the aim of the first route is to recognize the objects from the
scene and it can be subdivided into two ways, i.e. colour and form, whereas the
second route detects the position of objects in the scene. The neurons of the V1
layer belong to both paths, with areas V1->V2->V3->V4 being in charge of the "what"
path; and V1->V2->V5 intervene in the "where" path. However, the two paths are
not isolated, as there are neurons that interconnect them. A common property of
the neurons of the different layers is that they only react to small areas of the visual
field, which is called the receptive field. The V1 layer is common to both paths, and
it is also known as the primary visual cortex. The primary visual cortex receives
pre-processed information from the LGN, and separates this information in order
to perform complex analyses in further layers. In the primary visual cortex, several
fundamental tasks for visual perception are performed, as was demonstrated by
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David H. Hubel and Torsten Wiesel in 1962. There are several neurons which are
sensitive to some visual aspects (Wiesel, 1963), such as movement, orientation and
colour. Furthermore, it was also discovered that the receptive field of the neurons of
V1 changes dynamically, demonstrating that these neurons change their responses
to the same stimuli after a period of time. In other words, neurons are able to learn
from unknown stimuli and change their behaviour.

The visual system has inspired several approaches in several fields, such as
artificial vision or deep learning. Fig. 1.5 shows the entire vision system.

1.3.2 Acquisition of digital images

The first photography was taken in 1826 by French engineer Nicéphore Niépce.
However, the greatest contribution to photography was the development of the first
charge-coupled device by Willard Boyle and George E. Smith in 1969 at Bell labs. It
was the first digital image that could be stored in a computer, in order to capture
information of the current scene and process it. The evolution of digital image
vision systems has helped in other fields, such as medicine, where we can obtain
a 3D image of our tooth (Aichert et al., 2012); or astronomy where the universe can
be studied thanks to the use of modern telescopes, such as the Hubble telescope
(Whitmore and Schweizer, 2002).

Within the evolution of computer systems and digital imaging, the concept of
artificial vision emerged. The purpose of artificial vision is to mimic the way in
which living beings process visual information, replicating this behaviour through
computer algorithms, in order to perform tasks such as object tracking and image
classification, among others. Nowadays, there are several systems that, thanks to
artificial vision with other sensors, are able to perform different tasks, such as
autonomous driving (Matthaei et al., 2015) or face unlock in cell phones (Crouse
et al., 2015).

FIGURE 1.6: The world’s first photograph (left) and a photograph of
the Hubble telescope (right).

The first step in artificial vision is the acquisition and digitization of images
captured by an image sensor. There exist many different types of images; three of
the most used types are listed below:

• Intensity images: these are based on the luminous intensity obtained by the
sensor for all points of the captured scene. This kind of image is the most
common one, due to the low-cost manufacture of these sensors.

• Thermal images: these are captured with sensors that detect the radiation in
the long-infrared range, creating a thermal map of the objects.
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• 3D images: pixel value corresponds to the value of z, which determines the
depth of that point in the scene.

Regarding intensity images, due to their great usage, after the acquisition of the
image, a dimensional matrix is obtained. Each value of this matrix corresponds
to the intensity of that point in the scene. The concept of these images follows a
bidimensional function f (x, y), where the result of the function corresponds to the
luminosity of the pixel at x,y position. The value of the function depends on two
factors: the luminosity of the scene (i(x, y)); and the amount of luminosity reflected
(r(x, y)) by the objects of the scene. These factors are called luminosity and reflection.

f (x, y) = i(x, y) ∗ r(x, y) (1.1)

The digitized function shown above is related to the sampling. The sampling
converts the spatial coordinates to a matrix, where the values of each cell represent
the grayscale of the image. For instance, for a codification of 8 bits for the grayscale
(256 levels of grey), a 0 would correspond to a pixel that has absorbed all the incident
luminosity (black); on the other hand, the maximum value of 255 would represent a
pixel with the highest luminosity (white).

Finally, the last concept that defines an image is resolution. The resolution of a
digital image is the number of pixels captured by a vision sensor, and it is measured
in pixels per inch.

1.3.3 Silicon retinas

In 1970, Fukushima presented the first prototype of an electronic retina (Fukushima
et al., 1970). Although it had a great impact on the community, it was not as
successful in the industry, unfortunately. Nevertheless, this first attempt posed a
change in the state-of-the-art in vision sensors. In the last decades, it has been a
great challenge in neuromorphic engineering to improve and implement these first
prototypes in industrial applications.

Pixels of an AER retina behave as an independent neuron that works in an
asynchronous way, sending their addresses through an AER bus when they detect a
significant signal. The "significant" signal depends on the implementation of the
pixel. AER retinas are commonly divided into two groups:

• Spatial contrast (SC) sensors reduce spatial redundancy based on intensity
ratios, unlike spatial difference sensors, which use intensity differences. SC
sensors are useful in applications whose purpose is to extract features or
classify objects from a static scene.

• Temporal contrast (TC) sensors reduce the temporal redundancy based on
relative insensitive changes, unlike temporal difference sensors, which use
absolute intensity changes. TC sensors are useful for dynamic scenes where
illumination is not constant, such as object tracking and navigation.

Currently, there are several AER retinas: the dynamic vision sensor (DVS)
(Lichtsteiner, Posch, and Delbrück, 2008, Serrano-Gotarredona and
Linares-Barranco, 2013), the asynchronous time-based image sensor (ATIS) (Posch,
Matolin, and Wohlgenannt, 2011), the biomorphic Octopus image sensor
(Culurciello, Etienne-Cummings, and Boahen, 2003), the Magno-Parvo spatial
(Zaghloul and Boahen, 2004a, Zaghloul and Boahen, 2004b), and the spatial
contrast and orientation sensor (VISe) (Rüedi et al., 2003). Two of these
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neuromorphic vision sensors were used in this work: the DVS sensor and the ATIS
sensor. These sensors are inspired by the photo-sensitive cells of biological retinas,
as they capture a dynamic reality with each pixel triggering an event when the
change in luminosity exceeds a threshold. This luminosity change is encoded in the
polarity (p) of the visual event, which can be ON (p = 1) when the luminosity
increases, and OFF (p = 0) when luminosity decreases. Therefore, static visual
scenes will not produce any events, since there are no changes in them. This
prevents the redundancy of data, obtaining precise information. Fig. 1.7 shows the
operation principle behind the ATIS sensor.

FIGURE 1.7: ATIS operation principles. When a pixel’s luminosity
change reaches a given threshold (a), it produces a visual event with

an (x, y) address and a polarity, which is either ON or OFF (b).

In literature, there are several applications of these sensors, such as object
tracking (Linares-Barranco et al., 2018, Moeys et al., 2016), motor controlling
(Conradt et al., 2009, Perez-Peña et al., 2015, Rios-Navarro et al., 2015) or robotics
(Mueggler et al., 2015, Perez-Peña et al., 2013). The output of these sensors is
commonly processed by some kind of neuromorphic software framework.

1.3.4 JAER

Most of the tasks mentioned before were implemented using a well-known
neuromorphic software framework, called JAER (Delbrück, 2007). JAER is an
open-source software framework for real-time or event-based recorder
visualization, and for the development of filters or algorithms for event-based
processing. The algorithms and filters are developed in Java language for PCs.
JAER is composed of a "jAERviewer", which allows the connection of multiple kinds
of sensors, such as vision sensors or auditory system; and it allows performing
multiple tasks, such as viewing the events of the sensor in real time, logging the
stream of events or applying a filter.

These sensors emit the events in an asynchronous way with a timestamp of 1µs.
The connection between the sensor and the computer is performed through a USB
(Berner et al., 2007, Paz-Vicente et al., 2006), where several events are sent in packets.
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FIGURE 1.8: jAER capture of DVS sensor events.

jAERviewer can display the events in real time. Apart from visualizing events from
a sensor, a jAERviewer can log the output of a sensor, reproduce a recorded stream
of events, or apply a filter to the input stream.

In this work, jAER was used to receive events from a vision sensor and send
events to the systems designed.

1.4 Deep Learning

During the search for mechanisms of artificial intelligence, several mathematical
algorithms have been developed; one of the most popular approaches is deep
learning. The purpose of deep learning is to use the full computation capabilities of
computers to extract further and more detailed information compared to human
capacity. Computer technology has evolved, obtaining the computational power
required to deploy these algorithms, through which pattern matching or
recognition tasks can be solved quickly.

These algorithms need vast labelled data sets for training and testing. On the
other hand, these kinds of algorithms need several training iterations of complex
computation. Therefore, deep learning algorithms typically learn and classify a
whole dataset using a specific algorithm. Due to the number of iterations and the
complex operations performed by these algorithms, they are usually used when
there is a large/labeled dataset and when there is not another simple method to
apply.

1.4.1 History of Deep Learning

In 1975, Kunihiko Fukushima proposed the Cognitron neural network (Fukushima,
1975), which mimics how the visual system works for visual pattern recognition.
This network was extended in 1982 with a model called Neocognitron (Fukushima
and Miyake, 1982), which was still very slow and, like its predecessor, was limited
to visual pattern recognition.
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These neural network architectures are not considered to be part of the field of
deep learning, although they served as a basis for convolutional neural networks,
which are the ones that were used as deep learning architectures in this work. In
1985, David Rumelhart et al. showed that neural networks with multiple hidden
layers could be effectively trained by a relatively simple procedure, called back-
propagation (Rumelhart, Hinton, and Williams, 1986). This would allow neural
networks to get around the weakness of the perceptron, since the additional layers
endowed the network with the ability to learn nonlinear functions.

Within deep learning, there are several algorithms for pattern recognition;
convolutional neural networks (CNN) are among the most popular. CNNs are
inspired by the first layers of the visual cortex. Furthermore, the work developed
by Yann LeCun demonstrates that CNNs can be used to solve problems related to
artificial vision. In 1989, Yann LeCun aggregated convolutions to a 5-layer model
with backpropagation, decreasing the processing time and also obtaining more
characteristics from input data (LeCun, 1989). These algorithms require a long
training time, which can be shortened through the use of high performance
computing (HPC).

CNNs have been demonstrated to be a good approach in several fields apart
from artificial vision, such as audio processing (Domínguez-Morales et al., 2018,
Abdel-Hamid et al., 2014) or robotics (Browne and Ghidary, 2003, Ran et al., 2017).
Therefore, the tendency is to implement this kind of algorithm in embedded devices,
in order to deploy CNN models locally and in real time, avoiding the usage of
the cloud technology. The next section presents the state-of-the-art in the different
hardware implementations of CNN accelerators.

1.4.2 State-of-the-art in CNNs accelerators

The vast number of computational resources within the high power consumption
forced CNNs to be deployed in high-end servers at the beginning. However, the
high parallelism obtained through graphical processor units managed to reduce the
time to train and it also allows to infer models faster. This kind of platform can be
used remotely from any portable device, thanks to the cloud technology, which is
commonly used nowadays by most people. However, the hardware industry is
looking for VLSI solutions to implement this kind of network in real time with low
power consumption. This eliminates the need for an internet connection, which
allows performing pattern vision recognition tasks in real time locally; this is
critical in applications such as autonomous driving. Several VLSI solutions for
application-specific integrated circuit (ASIC) or field-programmable gate array
(FPGA) technologies have been implemented in recent years, in order to infer
CNNs even further. In this section, three of the most known and important ones
will be described. These architectures are: Origami, Snowflake and Eyeriss.

1.4.2.1 Origami accelerator

The Origami accelerator (Cavigelli and Benini, 2017) was one of the first
implementations of the CNN hardware accelerator for ASIC. The main property of
the Origami accelerator is the fact that pixels are received in streams. When there
are enough pixels to process, the convolution operation is performed in
sum-of-products (SoP). The circuit iterates over the channels of the input image,
storing the partial sums in a channel sum module (ChSum), in order to send the
partial sum out.
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composed of three memory banks: 1) filter bank, which stores the weights and
parameters of the filters, 2) the image windows SRAM, and 3) the image bank. The
last two are in charge of receiving the input pixel and feed the SoP modules.

FIGURE 1.9: Origami accelerator architecture. Image taken from
(Cavigelli and Benini, 2017).

The Origami architecture was a novelty in the way that data is processed,
receiving the pixels in streams and creating pipeline stages to the process.
However, since it is one of the first implementations, this architecture is limited, as
it is only capable of performing a small number of the convolution operations of a
CNN, and other layers, such as pooling of ReLU, have to be performed in software.
Fig. 1.9 shows the complete structure of the Origami CNN accelerator.

1.4.2.2 Snowflake

The Snowflake accelerator (Gokhale et al., 2017) is the evolution of a previous CNN
accelerator called NN-X (Gokhale et al., 2014). The first difference from this
accelerator is how input data are organized, in order to obtain the maximum
performance. The data are organized in "traces", which are defined as contiguous
regions of memory that must be accessed as part of the computation necessary to
produce a single output pixel. In addition, the data from a trace are accessed from
on-chip buffers at 256-bit granularity. These smaller blocks of data are called
vectors and they feed the vector MAC units (vMAC). This data organization is
what makes Snowflake the most efficient accelerators, since that data are processed
in vectors in a similar way as GPU units. The Snowflake architecture is composed
of 5 modules: the control core, which is in charge of configuring the traces; the
compute core, which contains the vMACs; the maps and weights buffers, where
traces and weights are stored; the comparators, which perform the maxpool and
ReLU operations; the data distribution network (DDN), which is responsible for
forwarding data returned from the memory to the correct on-chip buffers and
forwarding results produced by the coprocessor back to the memory; and, lastly,
the memory interface, which contains four load-store units to move results or
parameters into the memory.

1.4.2.3 Eyeriss

Eyeriss (Chen et al., 2017) is a CNN accelerator developed by the Massachusetts
Institute of Technology (MIT). The concept behind Eyeriss is the re-utilization of
resources to decrease the number of memory accesses, thus reducing memory
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bottleneck, which is the main problem in Deep Learning systems. Eyeriss consists
of a matrix of processing elements (PE), connected to a memory, called SRAM
buffer. Each PE is composed by a register file memory, an arithmetic logic unit
(ALU) and a small control unit. PEs process data in rows, performing the
convolution operation, accumulating the partial sums or performing another kind
of operation, such as pooling, through the communication between them. The
results are sent to the SRAM buffer, which configures the PEs for the next layer and
comprises the output feature maps for the next layer. The compression reuses the
result of the ReLU layer, which filters negative pixel values, setting them to zero.
This allows avoiding the multiplication of zero pixels, reducing the computation
and, decreasing the power consumption; this technique is known as zero-skip.
Fig. 1.10 shows the architecture of the Eyeriss accelerator.

FIGURE 1.10: Eyeriss accelerator architecture. Image taken from
(Chen et al., 2017).

1.5 Spiking Neural Networks

The spiking neural network (SNN) is a type of artificial neural network that mimics
biological neurons (Vreeken, 2002, Maass, 1997). The idea behind SNNs is that
neurons of this kind of network fire when their membrane potential reaches a
threshold, following the same mechanism as that observed in biology, which was
previously explained. In spiking neural networks, the activation level is usually
considered to be the neuron’s state, increasing with the incoming spikes from other
neurons, and then either firing or decaying over time. This approach is the most
used in neuromorphic engineering for pattern recognition, and several hardware
platforms have been developed to train and deploy SNNs.

1.5.1 IBM-TrueNorth

The IBM TrueNorth (Akopyan et al., 2015) chip is a very large CMOS chip that
incorporates 4096 neurosynaptic cores, where each core comprises 256 neurons
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each with 256 synaptic inputs. The architecture is fully digital and operates
asynchronously.

FIGURE 1.11: IBM TrueNorth architecture. Image taken from
(Akopyan et al., 2015).

The architecture has a clock of 1 KHz, which determines the basic time step. The
design is deterministic, since it executes software models that are easy to predict;
therefore, IBM TrueNorth can be used for application development or the
implementation of learning systems. The TrueNorth neurosynaptic core consists of
a 256x256 crossbar that selectively connects incoming neural spike events to
outgoing neurons. Neurons are connected following point-to-point connections to
outgoing neurons inside or outside the chip. Fig. 1.11 shows the architecture of
IBM TrueNorth.

1.5.2 NeuroGrid

Neurogrid (Benjamin et al., 2014) is a neuromorphic platform designed in Stanford
University, for the simulation of biological brain neurons. It is based on analog
technology emulating the ion channel activity of neurons with softwire structured
connectivity patterns. Neurogrid is able to simulate a maximum of one million
neurons and six billion synapses in real time. The Neurogrid board contains sixteen
Neurocores, each of which has 256 x 256 silicon neurons per chip. An offchip RAM
and an on-chip RAM (in each Neurocore) softwire horizontal and vertical cortical
connections respectively, creating a grid of interconnected neurons.

1.5.3 SpiNNaker

SpiNNaker (Spiking Neural Network Architecture) (Furber, 2016b) is a massively
parallel multicore computing system for modelling very large spiking neural
networks in real time, optimized for neuromorphic applications. Both the system
architecture and the design of the SpiNNaker chip have been developed by the
Advanced Processor Technologies Research Group (APT). Each SpiNNaker chip
consists of eighteen 200 MHz general purpose ARM968 cores, each with 64 kB of
tightly-coupled data memory and 32 kB of tightly coupled instruction memory. The
chip contains a Globally Asynchronous Locally Synchronous (GALS) architecture
with an asynchronous packet-switching network that is highly optimized for
neuromorphic applications. The communication between them is done via packets
carried by a custom interconnect fabric. Only 16 ARM cores are involved in the
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neuromorphic process, one of the rest is used for communication and the other is
reserved. Fig. 1.12 shows the layout of the whole SpiNNaker board.

FIGURE 1.12: Spinnaker platform layout. Image taken from
(Yousefzadeh et al., 2018).

1.5.4 Intel Loihi

The Intel Loihi (Lin et al., 2018) architecture consists of a digital asynchronous
architecture composed of a mesh of 128 neuromorphic cores, three embedded x86
processor cores, and an off-chip communication interface that allows the chip to
scale out to many other chips in the four planar directions. Communication
between cores is performed asynchronously through packetized messages with
write, read request, and read response messages for core management, spike
messages, and barrier messages (for synchronization).

Each neuromorphic core implements 1024 primitive spiking neural units based
on leaky-integrate-and-fire neurons, grouped into tree-like structures in order to
simplify the implementation. Fig. 1.13 shows the structure of an Intel Loihi core.
Each of those groups shares the same fan-in and fan-out connections, configuration,
and state variables in ten architectural memories. A unique property of Loihi’s cores,
with respect to other neuromorphic platforms, is their integrated learning engine,
which allows full-programmable on-chip learning.
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FIGURE 1.13: Intel Loihi core structure. Image taken from (Lin et al.,
2018).

1.5.5 DYNAP

DYNAP (Moradi et al., 2018) is a digital asynchronous architecture that comprises
four cores; each core comprises 256 mixed-signal neurons based on leaky-integrate-
and-fire; and each neuron has a fan-out of 4k, being able to perform a maximum
of 64k synapses. DYNAP architecture contains a novel routing methodology that
employs both hierarchical and mesh routing strategies and combines heterogeneous
memory structures for minimizing both memory requirements and latency, while
maximizing programming flexibility to support a wide range of event-based neural
network architectures, through parameter configuration. Fig. 1.14 shows the layout
of the whole DYNAP chip.

FIGURE 1.14: DYNAP platform layout. Image taken from (Moradi
et al., 2018).
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1.5.6 Spiking Convolutional Neural Networks

The spiking convolutional neural network is a type of SNN based on CNNs.
SCNNs implement the convolution operation, generally using leaky
integrate-and-fire neuron models or similar, such as the integrate-and-fire neuron
model. This kind of network uses the membrane potential of neurons, increasing it
with incoming spikes until a neuron reaches the threshold and fires, generating a
spike. This accumulation is the equivalent of multiplying the intensity of a pixel a
number of times in frame-based convolutions.

This concept of spiking neural networks is studied and explained in detail along
this work, with the implementation and development of several architectures to
accelerate the spiking convolution.
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Chapter 2

Objectives and Thesis structure

"Those who can imagine anything, can
create the impossible."

Alan Turing

This chapter sets out the main objectives of this thesis. First, the general and
specific objectives are presented. Then, the structure of the thesis is presented with
a brief description of each chapter.

2.1 Objectives

The purpose of neuromorphic engineering is to solve complex tasks emulating the
processing paradigm of the nervous system through the implementation of analog,
digital or mixed signal hardware architectures. The work presented is focused on
real-time pattern recognition VLSI architectures, particularly on convolutional
neural networks for both frame-based and event-based paradigms.

Initially, two types of objectives were proposed: general objectives, with the aim
of analyzing and studying the viability of event-based algorithms in the context of
vision pattern recognition and their implementation on VLSI systems, and specific
objectives, related to solving problems regarding the topic introduced previously
and the development of the architectures.

General objectives: to study pattern recognition algorithms based on spiking
processing and their hardware implementation for feature extraction of visual
information.

1. Study pattern recognition techniques and hardware architectures to extract
features from neuromorphic vision sensors.

2. Develop real-time VLSI architectures to accelerate and infer pattern
recognition algorithms in real-time.

The purpose of these general objectives is to mimic the behaviour of neural
systems, understanding how the brain works, in order to develop
high-performance hardware architectures and make use of spiking information.
With the aim of fulfilling these general objectives, a set of specific objectives were
proposed.
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Specific objectives: analysis and implementation of different techniques in order
to perform vision classification in VLSI for frame-based and event-based processing
based on pattern recognition algorithms.

1. Frame-based feature extraction through convolutional neural networks

(a) Study of CNNs theory for image classification.

(b) Train and test CNNs using Caffe and ADaPTION deep learning
frameworks.

(c) Implementation using FPGA technology to accelerate CNN inference
using OpenCL and SoC technologies.

(d) Analysis and performance study of FPGA and SoC-FPGA platforms for
CNN inference.

2. Event-based spiking convolution accelerators.

(a) Study of spiking convolution theory for event-based processing.

(b) Analysis of the state of the art of current spiking convolution
architectures.

(c) Design of spiking convolution processors architecture for FPGA.

(d) Frame-based to Event-based dataset generation and conversion.

(e) Test, analysis and evaluation of the architectures developed to implement
SCNNs.

3. Pattern recognition based on Hierarchy of time surfaces.

(a) Study of the theory of time surfaces for feature extraction.

(b) Implementation of a VLSI architecture to inference a hierarchy of time
surfaces network.

(c) Verification of the architecture classifying event-based image vision data
sets.

(d) Evaluation and analysis of the design implemented on a FPGA platform.

(e) Development of new memory models to reduce memory bottlenecks in
event-based processing systems.

(f) Study and analysis of memory model in hierarchy of time surfaces
networks.
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2.2 Thesis structure

The thesis presented is structured in four chapters, following the specific objectives
previously detailed, within a conclusion chapter. Each chapter is briefly described
below:

• Chapter 3: Convolutional Neural Network Accelerators
This chapter is focused on the implementation of CNNs accelerators on FPGA
platforms, and it explains two different FPGA implementations: the first one
consists of a CNN accelerator based on Altera OpenCL technology; then, the
chapter ends with the description of CNN accelerators based on FPGA-SoC
architecture, called NullHop.

• Chapter 4: Spiking Convolution Accelerators
In this chapter, three different spiking convolution processor architectures for
FPGA are described. The spiking processor is based on LIF neuron behavior,
processing data row-by-row, which reduces memory bottlenecks and,
consequently, the latency.

• Chapter 5: Pattern Recognition Based on Time Surfaces in Real Time
This chapter describes an FPGA implementation of an event-based algorithm,
called HOTS, which uses a novel concept of time surfaces to extract features
from visual events. Furthermore, a new memory model for event-based
processing systems is presented; this memory stores the most recent events
and it is tested under a HOTS network.

• Chapter 6: Conclusions and Future works

This chapter presents the conclusions from the research of this thesis, with the
main articles and future works.
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Chapter 3

Convolutional Neural Network
Accelerators

“The two most powerful warriors are
patience and time.”

Leo Tolstoy

Convolutional neural networks (CNN/ConvNet) have become, in recent years,
one of the most popular solutions to solve complex problems in several fields, such
as audio processing or machine vision, for detection or classification. The major
advantages of this kind of networks are their simple supervised training using
backpropagation and their high classification accuracy. On the other hand, CNNs
are computationally expensive, due to the large number of complex operations
performed. CNNs consist of two phases: training, where weights are adjusted
during several iterations with the aim of obtaining a better accuracy in each step,
and inference, where the model is deployed to perform a pattern recognition task.
The training step requires several iterations; therefore, CNN frameworks, such as
CAFFE (Jia et al., 2014) or Theano (Bastien et al., 2012) support the use of graphics
processing units (GPUs), since their massive parallelism can reduce the
computation time to train large network models.

Although GPUs parallelism can be used to reduce the time of the training and
inference steps, their power consumption and physical size do not make these
devices ideal for embedded systems. CNN operations can be divided into partial
operations that can be performed in a parallel way. According to this idea, the
tendency in recent years is to design CNN accelerators, based on
application-specific integrated circuit (ASIC) or field-programmable gate array
(FPGA) technology, to deploy these networks.

This chapter is divided into three parts. The first part explains the fundamentals
of CNNs, followed by a second part, which presents a CNN inference using OpenCL
language for an Altera FPGA. This solution is similar to a GPU inference, although it
uses the reconfigurable property of FPGAs to improve the performance. The results
for different implementations are analyzed and discussed in terms of latency, area
and power consumption. Finally, the last section explains the implementation of a
CNN accelerator, called NullHop, in a Xilinx FPGA. This accelerator reduces the
number of operations skipping the computation of null pixels and it proposes a
novel real-time hardware solution inside the state-of–the-art in CNNs.

CNNs are inspired by biological neurons of the primary visual cortex of the
brain, where each neuron from layer i is connected only to a subset of neurons in
layer i + 1, known as projective field. CNNs follow the same structure of other neural
networks, which have an input layer, an output layer and several hidden layers in
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between. The main difference of CNNs is that convolution operations are applied to
extract features from images. Apart from this layer, this kind of network is composed
of other layers that simplify the computation, reducing the amount of data. CNNs
also implement other layers to classify the output. This section describes the most
frequently used layers in CNNs.

3.0.1 Convolution layer

The convolution layer performs the convolution operation over an input, sending
the result to the next layer. The convolution operation uses a filter to process the
input data. Those filters, also known as convolution kernels, are matrices, whose
elements are called weights. The characteristics of the input data are grouped in
feature maps. In a CNN, the convolution layers process these input feature maps by
convolving their data (Equation 3.1), thus generating new output feature maps for
the next layer. Equation 3.2 shows the operations for one convolution layer, where
R and Q represents the input and output feature maps, respectively.

Wrq ∗ xq = z (3.1)

z(m, n) =
K−1

∑
k=0

L−1

∑
l=0

Wrq(k, l) ∗ xq(m + k, n + l) (3.2)

Filter weights are computed during the training phase using an algorithm
known as backpropagation (LeCun et al., 1989). The backpropagation algorithm
propagates the error calculated at the output to the previous layers, adjusting
weights coefficients and minimizing the error.

3.0.2 Pooling layer

The purpose of the pooling layer is to reduce the spatial dimension, in order to
decrease the number of parameters and computation in the network. This shortens
the training time and controls overfitting. This kind of layer is not affected during
the training phase, as it always performs the same operation without any kind of
parameter. The pooling layer combines neurons of an output feature map into a
single neuron of the next layer. The most common pooling functions are:

3.0.2.1 Max-pooling

It is the most commonly used function in this layer. This function obtains the most
representative value of a region of interest, reducing its size. Fig. 3.1 shows an
example of this function, where an output feature map is divided into groups of 2x2
and, then, these groups are replaced with the maximum value inside them.

FIGURE 3.1: Max-pooling.
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3.0.2.2 Average-pooling

Average pooling computes the arithmetic average of the values inside each region
of interest, instead of the maximum value used in max-pooling. Fig. 3.2 shows an
example of how average pooling is computed.

FIGURE 3.2: Avg-pooling.

3.0.3 Dropout layer

The dropout function was firstly introduced by Srivastava et al., 2014 with the aim
of reducing the overfitting. Overfitting happens when a model works extremely
well with the training set. This implies that the model can lose accuracy with other
images that differ from the ones of the training set. The dropout layer suppresses a
group of neurons during training, thus other neurons will have to step in and handle
the representation required to make predictions for the missing neurons. The effect
is that the network becomes less sensitive to the specific weights of neurons. This
results in a network that can generalize more efficiently and which is less likely to
overfit the training data. It is usually employed in very deep CNNs with a large
number of input and output feature maps. They were not used in the CNN models
presented in this work.

3.0.4 Fully-connected layer.

The fully connected layer works as a classifier, and consists of two interconnected
layers of neurons that follow an all-to-all pattern. This kind of layer is the last
one in a CNN structure, since they classify the resulting features obtained from the
previous convolution layers. The last fully-connected layer output matches with the
number of classes to be classified by the network.

3.0.5 ReLU layer.

The ReLU layer is a rectifier layer that applies the function shown in Equation 3.3.
This layer filters negative values, transforming them into 0. This layer is commonly
used in CNNs deployed in hardware, since, in further layers, the computation of
pixels whose value is 0 is avoided, reducing the number of operations and,
consequently, the power consumption.

f (x) = max(0, x) (3.3)

3.1 OpenCL

As part of the Neuromorphic Processor Project (NPP), a CNN accelerator based on
OpenCL for FPGA was developed. OpenCL is a free standard API for the parallel



30 Chapter 3. Convolutional Neural Network Accelerators

programming of diverse computing platforms, such as personal computers, high-
end servers, GPUs and FPGAs. The standard API provides an easy programming
model and an elegant low-level abstraction that allows programmers to develop
parallel applications for different hardware platforms, ignoring the knowledge of
the internal architecture.

The abstraction mentioned before is based on a hierarchy of models: platform
model, memory model and execution model. The knowledge of these models allows
programmers to optimize the application by making use of computing resources for
the target problem. The following sections explain the OpenCL hierarchy in detail.

3.1.1 Platform model

OpenCL considers each non-host processor as "devices" that are divided into one or
more computer units (CU), which are further divided into one or more processing
elements (PE), with the latter being the basic unit where computation is performed.
An OpenCL application is implemented as a host code and a device kernel code.
The application runs in the host processor (here in after referred to as "host"), which
executes the commands to prepare global memory buffers, communicating with
devices in order to send or receive data.

On the other hand, an OpenCL device executes the computation commands into
the processing elements. Fig. 3.3 represents an OpenCL platform model for one host
with multiple devices.

FIGURE 3.3: OpenCL platform model.

3.1.2 Execution model

The OpenCL execution model is divided into two units of execution: kernels, which
are executed in OpenCL devices, and a host program, which runs in the host. In an
OpenCL application, the computational work is performed by the kernels; therefore,
the key of the OpenCL execution model is how kernels are executed. When an
enqueued kernel command submits a kernel for execution, an index space is defined.
The function defined in the kernel is executed for each point in the index space. Each
of these functions is called a work-item and it is computed in the PEs. However,
these work-items are grouped in work-groups, which are managed by the device.

The space index mentioned before is called the NDRange. The NDRange is a N-
dimension index space of up to 3 dimensions. The NDRange (global_size) is divided
into work-groups (local_size) and the work-items to be processed. An example of
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how the NDRange is decomposed into work-groups for kernel execution is shown
in Fig. 3.4. In the example of Fig. 3.4, there is a 3D NDRange with a global_size of
16x16x16 and a local_size of 4x4x4; this computation is divided into 64 work-groups
of 64 work-items each.

FIGURE 3.4: OpenCL index space.

3.1.3 Memory model

In OpenCL, there are two different types of memory: the host memory and the device
memory. Host memory is the memory of the host, the behaviour of this is defined out
of the OpenCL context. On the other hand, the device memory corresponds to the
available memory for kernels in OpenCL devices. However, the device memory is
composed of four memory regions:

• Global memory: A memory region is shared by the host and the device, in order
to send or receive data. However, this memory is blocked for the host during
the computation until the kernel finishes and the data are ready to be read by
the host.

• Constant memory: A region of the global memory that remains constant along
the kernel execution. The host initializes and allocates the parameters in this
region.

• Local memory: A memory region local to a work-group. It is used to allocate
variables shared by all work-items of that work-group.

• Private memory: Private memory space for a work-item. The variables of this
memory region are not visible to another work-item.

An example of how memory is organized in an OpenCL device is shown in
Fig. 3.5.
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FIGURE 3.5: OpenCL device memory model.

Although OpenCL is a standard, the memory model is highly dependent on
the platforms where the OpenCL application will be deployed. In this work, the
OpenCL device was a Terasic-DE5 board donated by Intel-Altera. DE-5 contains a
Stratix-V FPGA, which has two different kinds of memory: off-chip memory, which
is composed of an 8GB DDR memory that is external to the programmable logic of
the FPGA, and on-chip memory, which consists of block ram memories (BRAM) of
the FPGA.

The main memory resources inside an FPGA are BRAM memories. The BRAM
memories are commonly used to store a large set of data in FPGAs. The two types
of BRAMs available in a device can hold either 18k or 36k bits, and the available
amount of these memories is device specific. The global memory is stored in the
off-chip memory, whereas the local memory will be allocated in BRAM.

3.1.4 CNN inference using Altera OpenCL

In this work, the Caffe framework (Jia et al., 2014) was used to train the network,
since it is the most used framework in the literature, as it describes the network
layers easily. Moreover, after the training step, the weights can be extracted easily
from the trained model to be used in any application.

The network deployed in this work is a modified version of the LeNet-5 (Lecun
et al., 1998), which was developed to recognize handwritten digits. Fig. 3.6
represents the whole network, which has a first convolution layer of 20 filters of 5x5
with 1 input feature map of 28x28 that corresponds to the input image, followed by
a max-pooling layer. The second convolution layer has an input of 20 feature maps,
generating 50 output feature maps and also followed by a second max-pooling
layer with ReLU. Finally, there are two fully-connected layers: one with 500
neurons connected to another fully-connected layer of 10 neurons, matching the
number of digits to be recognized.

The CNN is implemented, converting each layer in an OpenCL kernel. The
host is in charge of receiving the data of one layer and sending it to the following
one. This is due to the fact that, in OpenCL, the host application has the control
of the execution, allocating in the memory the input and output buffers of each
kernel. During the execution, each kernel reads and writes data into the global
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FIGURE 3.6: LeNet5 network architecture.

memory, to be read by the host after each layer’s processing. In order to reduce the
latency, the kernels can obtain a better performance through some directives, such
as increasing the number of CUs for a kernel, unrolling complex loops (UNROLL)
or vectorizing data access (single instruction multiple data) (SIMD). A diagram of
OpenCL kernels execution for LeNet5 is shown in Fig. 3.7. In this implementation,
the first convolution and pooling layer are merged into one kernel, whereas the other
layers are separated into different kernels.

FIGURE 3.7: LeNet5 OpenCL implementation.

3.1.5 Results

With the aim of testing the behaviour of the OpenCL FPGA implementation, a real-
time test was performed. The test consisted in processing frames captured from
a camera, measuring the average processing time of each layer. Each frame was
processed in three different scenarios with different parallelism directives:

• No parallelism: The kernel executes without any kind of parallelism.

• Unroll: Loops are unrolled, increasing parallelism, thus the input throughput
is higher.

• SIMD: The kernel architecture is adapted to access data in parallel, such as
vector processors. This solution increases parallelism as much as possible.
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The execution time and FPGA resources for each scenario are shown in Table
3.1. When parallelism increases, logic cells, digital signal processors (DSP) and
BRAM resources also increase, since more FPGA resources are needed to unroll
loops or vectorize data processing. However, the execution time also increases with
parallelism, due to the fact that the memory bandwidth generates a bottleneck when
multiple kernels access the global memory. This slows the kernels down, increasing
the execution time. Therefore, this solution does not allow deploying real-time
CNNs, since the memory bandwidth is too low, even for a small CNN as the one
used in this chapter.

Altera OpenCL provides a mechanism that allows communications between
each kernel, called pipes. Kernels can send and receive data from one kernel to
another using pipes, creating a pipeline processing flow that reduces the time
wasted in the host communication after each kernel’s execution. Although this
solution reduces the global memory bottleneck, pipes do not belong to the OpenCL
standard; therefore, this mechanism is only valid for Altera OpenCL platforms. In
addition, it would require a communication protocol between kernels, thus more
FPGA resources would be consumed.

In addition to the real-time latency problem, this kind of platform depends on
the peripheral component interconnect (PCI) interface and they also have a high
power consumption. Therefore, these hardware solutions are not appropriate for
embedded systems.

TABLE 3.1: Altera OpenCL results for each scenario; no parallelism,
unroll and simd.

Convolution
Layer

Exec
Time (ms)

Logic Cells
/Elem.(K)

DSP slices BRAM(Kb)

Conv_pool1 1.01 / 1.01 / 0.98 145.7 /42.3 / 73.7 8 / 31 / 57 5225 /6205 / 11200
Conv2 3.95 / 3.96 / 4.27 300.5 / 34.0 / 34.0 8 / 31 /31 3207 /4882 / 4900
Pool2 0.06 / 0.07 / 0.13 6.9 / 6.9 / 6.8 2 / 2 / 2 279 / 273 / 279

Ip1_ReLU 1.01 / 1.81 / 2.02 5.8 / 5.8 / 5.8 4 / 4 / 4 1471 / 1470 / 1500
Ip2 0.15 / 0.14 / 0.13 5.7 / 5.7/ 5.7 4 / 4 / 4 1471 /1470 / 1500

3.2 NN-X architecture

Altera OpenCL presents a huge memory bottleneck between host and device, since
the kernels have to wait for all the data from previous layers to perform the
computation. On the other hand, other FPGA/ASIC solutions improve the number
of operations per second by performing the convolution when there are enough
pixels, as is shown in Fig. 3.8.

In order to reduce the impact of memory bandwidth to implement a real-time
convolution accelerator, other CNN accelerators, such as NN-X or Origami, were
studied and implemented. The RTC group was in charge of simulating and
implementing the NN-X architecture, whereas the Institute of Neuroinformatics
(INI) from the ETH of Zurich developed the Origami accelerator.

The NN-X accelerator, later known as Snowflake, is a system-on-chip
(SoC)/FPGA implementation proposed by Gokhale et al., 2014. NN-X is composed
of two parts: an ARM processor (Berger, 2007, Joshi Vaibhav Vijay, Balbhim
Bansode and ARM Limited, 2013) which is in charge of configuring the accelerator
and controlling transfers of input data; and the NN-X coprocessor, where
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FIGURE 3.8: Input/output data sequencing by rows in a CNN
accelerator.

convolutions are performed among other operations. The NN-X coprocessor is
composed of the following three elements:

• Collections: where the computation of CNN is performed. These modules
also perform different operations apart from convolution, such as pooling and
non-linear operations. In addition to computation submodules, it also contains
a router to communicate with other collections or with the memory router.

• Memory router: this module is in charge of transferring data between the
external memory and the collections.

• Configuration bus: it connects the ARM processor to the collections in order
to configure the different parameters.

FIGURE 3.9: NN-X architecture. Image taken from (Gokhale et al.,
2014)

The NN-X coprocessor was simulated using a mixed signal architecture
simulator, called Chimera-SIM. Chimera SIM is an evolution of the discrete event
simulator developed at Cornell University during the IBM TrueNorth
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development. The simulator gives a high-level programming tool in C++/python
that allows for rapid prototyping.

Although some components, such as a single collection with a memory router,
were implemented in a correct way, both NN-X and Origami implementations were
discarded for two reasons: the low number of convolutions that both architectures
were able to perform and the fact that they do not use novel techniques, such as
zero-skip, to reduce the number of operations.

3.3 NullHop Accelerator

In collaboration with the INI group from the ETH of Zurich, a CNN accelerator
called NullHop (Aimar et al., 2018) was developed. The main property of the
NullHop accelerator is that it skips the computation of pixels whose value is zero,
making use of the ReLU layer, whose resulting feature-maps activation is sparse,
which means that the resulting feature-maps contain several 0 values. Fig. 3.10
represents the sparsity of two of the most popular CNNs in the literature: the
GoogleNet (Szegedy et al., 2015) and VGG19 (Simonyan and Zisserman, 2014).
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FIGURE 3.10: Sparsity VGG19 (left) and GoogleNet (right).

3.3.1 NullHop Architecture

The current version of the NullHop accelerator is able to accelerate a convolution
layer with max-pooling and ReLU layers. Most deep neural network frameworks
represent weights in floats of 32 bits. However, the current tendency in CNNs is to
reduce bit precision, since it reduces the number of DSPs used in computation and,
thus, the power consumption. The NullHop accelerator uses a precision of 16 bits
codified in Q8.8 format.

After performing an entire convolution layer, NullHop is configured with the
weights and parameters of the next convolution layer; then, non-zero pixels are
sent. However, a mechanism to distinguish valid pixels from non-valid pixels is
needed. Input feature maps are analyzed in order to detect non-zero pixels, creating
a sparsity map that indicates with 1 bit which pixels are valid pixels (’1’) and which
ones are not (’0’). Fig. 3.11 shows an example of how compression is performed.
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FIGURE 3.11: Sparsity map generation. Image taken from (Aimar
et al., 2018).

Sparsity maps are sent to the accelerator as 16-bit words. Each sparsity map
represents a row of 16 pixels, when a group of pixels is valid (’1’). The next words
sent to the accelerator are the values of those valid pixels; otherwise, if all the pixels
of a sparsity map are null pixels (’0’), the next word to be sent is the sparsity map of
the next row of 16 pixels to be processed, as is shown in Fig. 3.12.

FIGURE 3.12: Sparsity map streams. Image taken from (Aimar et al.,
2018).

The NullHop architecture consists of three modules: input decoding processor
(IDP), compute core module (CCM), and pooling-ReLU-encoding module (PRE).
The IDP module decodes the sparsity maps and stores the pixels in the memory. The
computation is performed inside the CCM, which is composed of 128 MAC units.
Each MAC has a controller, which is in charge of sending the pixels and the kernels’
weights to perform the multiplication and accumulation operations, generating one
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part of the output feature maps. The last module, called PRE, performs both pooling
and ReLU layers, if these are enabled during configuration. In Fig. 3.13 is shown the
NullHop architecture and its components.

FIGURE 3.13: NullHop architecture.

As was previously mentioned, the main advantage of this kind of accelerator, in
comparison with the one implemented in OpenCL, is that the computation can be
started while pixels are coming, since pixels are received as streams. The OpenCL
implementation does not allow processing data in a pipeline way, as all the kernels
need to wait for all the data to be sent by the host. Current CNNs accelerators,
such as Origami (Cavigelli and Benini, 2017), Snowflake (Gokhale et al., 2017) or
Eyeriss (Chen et al., 2017), make use of this mechanism to increase the OP/s, creating
pipeline stages between convolution layers. In Table 3.2, the NullHop FPGA and
ASIC versions are compared with other implementations of CNNs accelerators in
terms of efficiency and power consumption.

TABLE 3.2: Comparison of CNN accelerators.

Eyeriss Origami Caffeine Snowflake NullHop

Technology/Platform ASIC 65nm CMOS ASIC 65nm CMOS Ultrascale KU060 Zynq XC7Z045
GF 28nm

Zynq XC7Z100
Frequency (MHz) 200 250 200 250 500/60

Precision 16-bit fixed 12-bit fixed 16-bit fixed 16-bit fixed 16-bit fixed
MAC units 168 196 1058 256 128

Performance
(Gops/s)

46.1 145 310 116.5 471/17.2

Theoretical Max
(Gops/s)

67.2 196 423.2 128 128/15

Consumption
(W)

0.28 0.45 25 9.48 0.155/0.851

Computational
Efficiency

68.6% 74% 73.3% 91% 368/143%

3.3.2 NullHop FPGA implementation

In order to develop a prototype, a Zynq 7100 FPGA board was used. This kind of
platform has a Zynq processor, which contains a dual-core ARM-Cortex-A9, called
processing system (PS), and a Kintex-7 as programmable logic (PL), in the same
chip. This kind of platform allows executing software applications in the PS and
communicates with the PL. In our implementation, Nullhop is programmed in the
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PL, whereas PS is in charge of configuring and communicating with the accelerator,
configuring it, sending frames and receiving the results of each CNN layer. This
FPGA implementation was developed as part of the collaboration between INI and
the Robotics and Technology Lab (RTC) of the University of Seville (to which the
author belongs) as part of the NPP project.

3.3.2.1 AXI-INTERFACE

The PS communicates with the PL through an Advanced eXtensible Interface (AXI),
which is a standard open-source protocol of ARM. AXI is a master-slave protocol,
where the master sends the address of the slave with a control signal. The master
answers sending data to be written (write operation) or the slave answers sending
data (read operation). However, this protocol is designed for communications with
devices where the data traffic is low.

In recent years a new version of this protocol was developed to increase the input
throughput, called AXI-stream (AMBA, 2014). This new protocol allows transferring
huge streams of data, ignoring the address step of the AXI protocol. In order to make
as fast as possible the transfers between PL and PS this protocol was used, which is
implemented by the AXI-DMA IP.

AXI-DMA IP has two different channels: MM2S, which reads from the memory
and send streams of data to the PL, and S2MM, which receives streams from the PL
and stores them in the memory. The connection between AXI and DMA is performed
by two adaptation modules: MM2S2NH and NH2S2MM. Both modules consist of a
state machine with a FIFO, which adapt the AXI protocol to the NullHop protocol.

3.3.2.2 Implementation Results

The design was synthesized at 60 MHz, due to the limitation of the critical path
to MAC blocks. The NullHop implementation has 128 MAC and can store 512
input/output feature-maps of a maximum size of 512x512. Table 3.3 shows the total
resource summary of the implementation. As can be observed, the design is limited
by the consumption of LUT resources of the FPGA.

TABLE 3.3: NullHop FPGA resources.

Resource LUT FF BRAM DSP
IDP 7.55% 0.41% 17.22% 0%

MAC 50.19% 16.99% 33.9% 6.30%
PRE 16.41% 1.88% 0% 0%

AxiSTREAM 1.25% 0.73% 1.46% 0%

Regarding the power consumption, the whole system, including the PS and PL,
has a total static power consumption of 317 mW and a dynamical consumption
of 2006 mW. The PS consumes 76% (1532 mW) of the total dynamic power. The
resulting 24% (474 mW) corresponds to the PL, distributed in its components: logic
(2%), clocks (13%), signals (7%), BRAM (2%), and DSP and I/O (both < 1%). Fig. 3.14
shows the power consumption summary obtained from the syntheses tool.
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FIGURE 3.14: NullHop FPGA power consumption.

3.3.2.3 Real-time CNN inference

In order to test the behaviour of the architecture, a real-time demo was developed
to test the performance. In this test, NullHop runs a CNN in real time, called
Roshambo, which recognizes the symbols of the Roshambo game (rock, paper,
scissors). This network implements 5 convolution layers of different kernel sizes, 1
of 5x5, 3 of 3x3 and 1 of 1x1, each followed by a max-pooling layer of 2x2 and a
ReLU layer. The network performs 18 MOp, and it was developed to exploit the
NullHop computation resources to the maximum. Fig. 3.15 is shows the structure
of this network.

FIGURE 3.15: Roshambo CNN.

Zynq PS runs an embedded OS, called Petalinux, which is open-source and fully
configurable. In this test, a Petalinux runs a software application called CAER.
CAER collects events from a DAVIS-240C (Brandli et al., 2014) sensor connected to
the Zynq board and integrates them as frames that are sent to the accelerator. Apart
from the integration, CAER implements the NullHop and the AXI-DMA controller
to configure each layer of the accelerator, send input feature maps and collect the
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FIGURE 3.16: Block diagram of the NullHop test scenario.

results. Fig. 3.16 shows the block diagram of the SoC system implemented for the
test proposed. The ARM processor configures each layer, sending the parameters
and the input feature maps of the corresponding layer.

Each convolution and pooling layer are performed inside NullHop;, on the other
hand, the fully-connected layer is implemented in software running in the ARM
core.

The performance of the accelerator was obtained by measuring the time to
process one frame. This experiment allows measuring the time spent by both the
software and the hardware for each layer. The software execution time was
measured using CAER, whereas the hardware execution time was analyzed using
an oscilloscope, measuring the time that the MACs took to compute the
feature-maps. As is shown in Fig. 3.17, the time to process one frame is 8 ms, with a
frame-rate of 125 fps and a total of 2.25 GOp/s. The time consumed by the slowest
layer is due to the the integration of frames of the CAER software. A possible
solution to reduce the latency is to connect the sensor directly to the PL, integrating
the events through hardware and reducing the computation load of the PS.

FIGURE 3.17: Roshambo timing analysis.

This kind of accelerators can perform a vast number of operations with a low
power consumption. The tendency of CNNs is to be deeper, which allows them
to recognize more patterns, thus implying more computation. Although this kind
of accelerators are able to decrease the number of operations to be computed, it is
possible to reduce the number of operations (therefore the power consumption) by
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using other kinds of processing paradigms, such as neuromorphic event-based ones,
which will be explored in further chapters.

Courbariaux, Bengio, and David, 2015 proposed a new approach to train CNNs
using binary weights. This implementation consists of limiting the weights values
to -1 or +1. This new approach can reduce the number of operations and memory
resources. However, it is an extreme case of low-precision technique. The main
problem in CNNs is the multiplication and accumulation operations and their high
hardware cost in terms of DSPs. Although NullHop makes use of the sparsity
representation of DVS to perform less computation, an integration of events into
frames is needed, slowing down the processing flow, as was previously mentioned.
In the next chapter, a spiking convolution processor based on neuromorphic
processing paradigm is explained.
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Chapter 4

Spiking Convolution Accelerators

“Any man could, if he were so
inclined, be the sculptor of his own
brain.”

Santiago Ramón y Cajal

Spiking convolutional neural networks (SCNN) are inspired by ConvNets, and
they are a type of spiking neural network. Although Convnets were developed for
frame-based processing, several methods have been recently developed to
transform from frame-driven to event-driven networks, as proposed by
Pérez-Carrasco et al., 2013, Diehl et al., 2015, Rueckauer et al., 2017, whereas other
methods directly train the event-driven networks with spikes (Orchard et al., 2015a,
Stromatias et al., 2017a). Farabet et al., 2012 and Lee, Delbrück, and Pfeiffer, 2016
demonstrated that SCNNs provide a better solution in terms of accuracy, power
consumption and speed than CNNs.

These spike techniques do not follow the all-to-all pattern connection of CNNs;
the processing can start with the first arrival event from the sensor, generating
results while the sensor is producing new events. This kind of network is
implemented in several neuromorphic hardware platforms, such as IBM TrueNorth
(Esser et al., 2016) or Spinnaker board (Serrano-Gotarredona et al., 2015). Although
these neuroinspired platforms are large-scale modular computing systems with a
vast number of neurons and synapses, these hardware solutions cannot inference
this kind of network in real time, due to the fact that they cannot handle the high
event traffic produced in spiking convolution layers.

This chapter presents three different FPGA designs that are capable of
performing event-based convolutions in real time based on leaky integrate–and-fire
neurons. The first version performs event-based convolutions by firing events with
positive and negative polarities, using two different thresholds for both positive
and negative membrane potentials. The neuron model implemented in this version
does not implement the refractory period. The next design versions, apart from
adding the refractory period of leaky integrate-and-fire neurons, discard the
negative threshold, adding new computation mechanisms to improve the
performance and the input throughput. The behaviour of each version is explained
in the following sections in detail, with some performance tests using different
input event traffic, in order to characterize the convolution processor in terms of
speed, power consumption and performance.
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4.1 Spiking convolution layers

4.1.1 Spiking convolution

Spiking convolution replicates the same concept of frame based convolution in the
spike-domain. However, in event-based processing not all the pixels of a frame are
processed; this is due to the fact that neuromorphic vision sensors, such as DVS
(Lichtsteiner, Posch, and Delbrück, 2008) or ATIS (Posch, Matolin, and Wohlgenannt,
2011) only detect changes in the luminosity of a scene. Those changes are called
events, and they are represented by an address (x,y), which, in turn, represents the
pixel position and a polarity; the latter indicates whether that pixel’s luminosity is
higher than the previous scene (ON) or lower (OFF). Unlike frame-based cameras,
where all the pixels of a scene are scanned, even if there is no activity, neuromorphic
sensors represent a moving reality, where only those pixels that have changed are
detected, reducing pixel computation in machine vision processing.

In a spiking convolution an input image X is coded in such a way that each pixel
X(i,j) is represented by a number of events of a visual source output (DVS or ATIS
sensors). The results of convolution operations are stored in a Y matrix (capacitors
for analog circuits or registers or RAM cells for digital circuits). When an input event
arrives, the corresponding pixel and its neighbors are modified in Y by adding the
convolution kernel. The following Equation (4.1) shows the operation for computing
each incoming event with address (i,j):

Y (i + a, j + b) = Y (i + a, j + b) + K (a, b) , ∀a, b
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(4.1)

Once all the events of pixel X(i,j) have been received and calculated, the
integrator value of the corresponding address Y(i,j) accumulates X(i+a,j+b) ∀(a, b),
times the value of the kernel. In other words, we are adding the kernel value to a
neighbor of outputs as many times as the number of input events. This continuous
addition is equivalent to multiplying the intensity of a pixel by a kernel value in
frame-based convolutions. The output of the convolution operation, at this point, is
stored in a matrix of integrators Y. The resulting matrix Y can be sent out in several
ways. In this work, it is inspired by the leaky integrate-and-fire (LIF) neuron
model. In order to accelerate the spike convolution, three different FPGA
architectures were developed. Two of them have different LIF implementations and
they will be explained in detail with the designs.

4.2 Subsampling layer

As was explained in the previous chapter, in a frame-based CNN, a convolution
layer is usually followed by a pooling layer, reducing the spatial size of output
feature maps and, thus, the computation in the next layers. In SCNNs, the pooling
layer is easier to implement than in frame-based CNNs, since reducing the spatial
size requires dividing the (x,y) address by two. It has been demonstrated in other
works (Pérez-Carrasco et al., 2013) that this mechanism is valid for the
implementation of a subsampling layer in a SCNN. An advantage of this
implementation is that the hardware implementation only needs a shift register to
perform the subsampling, as is shown in Fig. 4.1.
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FIGURE 4.1: Example of event sub-sampling. The input event is
shifted to the right, dividing its value by 2.

4.3 Leaky integrate-and-fire convolution processor V1

4.3.1 Leaky integrate.and-fire neuron model for V1 convolution processor

As was previously mentioned, the neuron model implemented in this work is the
LIF model. The implemented LIF neuron model increases or decreases its membrane
potential with the addition of kernel coefficients. When the membrane potential
reaches a positive (PTH) or negative threshold (NTH), a spike is generated with the
corresponding (x,y) address of the neuron and its polarity, resetting its membrane
potential afterwards. The LIF neuron is inspired by the biological neuron, which
reduces its membrane potential when it does not receive any excitation during a
period of time. This property is called leakage. LIF neuron is inspired in biological
neuron, which reduces its membrane potential if it does not receive any excitation
during a period of time. This property is called leakage.

FIGURE 4.2: LIF behaviour with several input events (IE).
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Leakage is implemented in the processor, since neuron that do not receive any
excitation do not give information about the actual scene. In this implementation,
leakage time, which is the time to apply the leakage, and its reduced potential
value are fully configurable parameters that allow controlling the event traffic. This
fact implies that a small leakage time would reset neurons more often. On the
other hand, larger values for decay time lead neurons to reset their potential rarely,
increasing the number of output spikes. Fig. 4.2 represents the behaviour of the
implemented neuron.

4.3.2 Spiking convolution processor V1 architecture

In the literature there are several implementations of event-based convolution
processors for FPGA (Linares-Barranco et al., 2010, Camuñas-Mesa et al., 2018).
These implementations access data pixel-by-pixel, increasing the number of
memory accesses and memory bottlenecks, thus increasing the latency. The
solution proposed improves the performance, as the data are accessed row-by-row
instead of pixel-by-pixel, reducing the time to perform a convolution with a higher
input throughput. There were several attempts to implement a row-by-row
convolution processor in FPGAs. However, there was an important limitation, as
the BRAM memory was completely consumed by few convolution processors,
since the synthesis tool provides all the memory available to a small number of
convolution modules. The main idea of the architecture presented in this chapter is
to use a memory arbiter that shares all the memory with the convolution modules,
minimizing the consumption of memory resources.

Fig. 4.3 shows a high-level schematic of the event-based row-by-row processor
architecture. The processor has three interfaces: two address event representation
(AER) interfaces, which allow the processor to connect other neuromorphic sensors
to receive and send events, and a 32-bit digital interface to connect with a host
microcontroller to configure the system.

FIGURE 4.3: Convolution processor V1 schematic.

The system is able to compute a maximum number of 64 convolution operations
in parallel with kernel sizes from 1x1 to 7x7. These convolutions are computed row-
by-row in a fully shuffled way, where one complete row is computed per clock cycle.
The engine is able to perform the spiking pooling operation, decreasing the spatial
size of the representation to reduce computation in a SCNN.
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First of all, let us provide a high-level overview of the processing pipeline. When
an input event arrives, each convolution engine reads the membrane potential and
leakage timestamps from the memory. These values correspond to neurons around
the address of the received event and to the size of the programmed kernel, and
they are read row-by-row. The convolution engine compares the timestamps with a
global counter for leakage, in order to verify whether leakage must be applied. Then,
the convolution engine convolves a membrane potential row with a kernel row. The
neurons that reach the threshold fire, producing an event with (x,y) address and their
polarity. This process is repeated until all rows are convolved by all kernel rows.

The following subsections describe the functional blocks of the accelerator and
the processing pipeline in detail.

4.3.2.1 Membrane potential, leakage timestamps and kernel BRAM banks

In previous chapters, it was mentioned that BRAMs are the main memory resources
to store large amounts of data in FPGAs. In this design, BRAM is divided into three
different memory banks: one bank stores the membrane potential, the second one
stores the leakage timestamps and the last bank stores the values of the kernels.

Memory banks for membrane potential (MPB) and leakage timestamps (LTB)
are organized in multiple blocks that store values in rows of 8 pixels. When a
convolution engine accesses memory data, it transmits three (x,y) addresses of the
corresponding row to be convolved and the convolution ID (CID). The x address
selects the memory blocks to be accessed, using a decoder to enable or disable the
banks.

Memories store values for a maximum image size of 128x128 for all convolution
engines. Since the memory banks are shared by all the convolution engines, the CID
specifies the memory region for the corresponding engine and the y address selects
which pixel row is read/written.

Each BRAM memory row stores 8 pixels with a resolution of 8 bits, thus for a
128-pixel row, 16-BRAM blocks are needed. The depth of this memory is related
to the number of convolution engines (N) multiplied by the number of rows of an
image, which is 128.

During the processing of an event, the convolution engine always reads one row
of two consecutive BRAMs: the one where the input event belongs and the neighbor
row. The reason for this multiple read is that neighbor pixels of the input event can
be involved in the convolution operation, but they can be stored in a different bank.
Fig. 4.4 shows an example of how MPB and LTB are read/written.

Following the same concept, the kernel memory is organized in one shared block,
where KVs are stored row-by-row. When a kernel row is read, a mask (CM) is
generated in order to let the convolution engines know which pixels of the combined
membrane potential row will be convolved.

The memory is accessed using a memory arbiter, which grants access to the
corresponding convolution module. The memory arbiter receives request petitions
from convolution modules, answering with an acknowledgment which indicates
that the corresponding module can access the shared memory. The arbiter
implemented is a priority arbiter, which means that lower convolution modules
access the memory earlier. However, when memory access is granted to a
convolution module, it will not be granted again until the request from other
modules is checked. This prevents one convolution engine from owning the
memory access.
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FIGURE 4.4: Example of BRAM access.

4.3.2.2 Leakage system

One of the main properties of LIF neuron is leakage. The purpose of implementing
leakage is to store, in BRAM for each neuron, a timestamp (leakage timestamp)
that corresponds to the last time the neuron was accessed. During convolution,
the leakage timestamp is compared with the counter of a global counter, called
leakage counter (LC). If the temporal difference is higher than a configurable value,
leakage is applied; otherwise, the convolution is performed without leakage. LC
has a resolution of 32 bits, since storing 32 bits in BRAM for each neuron for all
convolution engines would consume a large amount of resources; therefore, only 8
bits of the counter are stored. Those bits are selected using a sliding window that
allows calibrating the leakage time resolution. Fig. 4.5 shows the counter mechanism
implemented.

FIGURE 4.5: Leakage counter mechanism.

However, an overflow can occur in digital counters and leakage would be
applied wrongly. To solve this problem, a mechanism based on distributed ram was
developed.

Multiple lookup tables (LUT) in a slice memory (SLICEM) can be combined in
diverse ways to store large amounts of data (LUTRAM). LUTRAM, or distributed
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RAM, is crucial to many high-performance applications that require relatively small
embedded RAM blocks, such as FIFOs or small register banks.

The solution proposed in this section consists of a leakage memory composed of
a bank of arrays of 128x128 LUTRAM cells of 2 bits each, with one bank for each
convolution engine. Fig. 4.6 shows how the leakage LUTRAM memory bank (LLM)
works for a 3x3 kernel size. Initially (t=t0), LLM cells have a value of 0 (Fig. 4.6.a).
When LC produces an overflow (Lov), each cell adds 1 to its content (Fig. 4.6.b).
When an input event (IE) is convolved, the content of those rows that have been
accessed during the convolution, are reset (Fig. 4.6.c). If another overflow occurs,
the cells increment their values again. Those cells that have reached a value of 2
indicate that a long time has passed since the last access to that neuron. Therefore,
those neurons would have decreased their membrane potential to 0; thus, the next
time one of those neurons is accessed, their membrane potential is reset (Fig. 4.6.d).

LLM is inside each convolution engine and it is also read/written row-by-row.
When the leakage counter produces an overflow, the convolution engine cannot
update the membrane potential memory until the content of each leakage memory
has been updated, since the membrane potential could be reset. However, a
convolution engine can read from the memory during the update operation,
reducing the waiting time.

FIGURE 4.6: Leakage LUTRAM mechanism.

4.3.2.3 Convolution Engine

The convolution engine module is the most important module, since it is where the
convolution is performed. This module consists of a state machine that
communicates with the memories by reading membrane potentials, leakage
timestamps and LLMs. Convolution engines are coordinated by a memory arbiter
that gives them access to the memory. This arbiter solution allows all convolution
engines to work in parallel by sharing BRAM, saving FPGA memory resources in
an efficient way. When rows from the memories are read, the convolution starts
checking the content of the leakage LUTRAM memories. If a long time has passed,
the membrane potential is reset; otherwise, the convolution is performed. Before
starting the convolution operation, LC and leakage timestamps are compared to
apply decay, then the convolution is performed. If a membrane potential reaches a
threshold, an event with the (x,y) of the neuron and its polarity are generated and
sent to an output FIFO. The advantage of this implementation is that it decreases
the number of memory accesses, since the data are read and convolved row-by-row.

Although convolution is performed correctly by the processor presented, the
output event rate is quite high and needs to be stabilized in order to implement
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a SCNN. Although the leakage can control the output event rate, when the activity
of some neurons is higher, the information given by them can be redundant and also
saturate the system.

4.4 Leaky integrate-and-fire convolution processor V2

As was previously mentioned, version 1 of the event-based convolution processor
had a high output traffic rate to deploy a SCNN. CNNs implement the ReLU layer,
which decreases the computation. However, some works implement ReLU in the
spiking domain, implementing it as a group of neurons whose firing rate works as a
LIF neuron with no refractory period (Cao, Chen, and Khosla, 2015), obtaining good
accuracy compared with ConvNets (Diehl et al., 2015). In spite of its accuracy, this
solution does not solve the event traffic problem in hardware platforms, since, if a
group of neurons are excessively active, they will generate a large amount of spikes
that can saturate FIFOs, creating bottlenecks. Another mechanism that can stabilize
the traffic is the refractory period of LIF neurons. The refractory period does not
allow neurons to fire until a period of time has been meet, reducing the firing rate,
avoiding redundant information of overactive neurons and stabilizing the output.

The new version adds a new mechanism to implement the refractory period in
the FPGA. In addition to this mechanism, some architectural features were
developed to optimize the computation in convolution engines.

4.4.1 Leaky integrate-and-fire neuron model for V2 convolution processor

The LIF behavior has two different features compared to V1. Firstly, the refractory
period has been added, which is a property of biological neurons that guarantees
a separation time between two spikes generated by the same neuron. If a neuron
fires and generates a spike, it should wait for a period of time before receiving any
kind of excitation. A long refractory period implies that the neuron will wait longer
before firing, reducing the firing rate. On the other hand, a short refractory period
will let the neuron fire more often.

The other feature of this implementation affects the membrane potential values.
Since the results of convolution can be interpreted using either positive or negative
events, one part was removed. Thus, in this work, only positive membrane
potentials can fire. Fig. 4.7 represents the change of membrane potential for this
neuron implementation.

4.4.1.1 Refractory period mechanism

The refractory period uses another counter with the same sliding window
mechanism as the leakage counter, called refractory counter (RC). Another BRAM
bank for refractory timestamps (RTB) was also used.

During the convolution process, the refractory timestamp is compared with the
refractory counter time (RCT). If the refractory timestamp is higher than the RCT,
the refractory period is met and the neuron can fire if the threshold is reached.
Otherwise, this neuron must wait until the period is met. If during convolution, a
neuron fires, then it updates its refractory timestamp with the result of the RCT plus
a programmable refractory period value (RPV). The resulting refractory timestamp
indicates the next time that a neuron will be able to fire. Otherwise, if its refractory
timestamp is 0, the neuron can fire the next time, and thus it will be accessed.
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FIGURE 4.7: LIF behaviour with Refractory period.

However, during this update, the sum operation of RCT and RPV may produce
an overflow. Therefore, this neuron would be able to fire before meeting the
refractory period. In that case, the solution proposed uses another LUTRAM bank
as the leakage system. Using a similar concept as the LLM bank, a refractory
LUTRAM memory bank (RLM) is instantiated. This bank is composed of 128x128
LUTRAM cells of 1 bit. When adding the actual time to the refractory period, an
overflow occurs, which means that the neuron must wait for a counter overflow
and some time before it can fire. Therefore, when the refractory counter RC
produces an overflow, instead of adding 1, as for leakage memories, it subtracts 1 to
all cells in the RLM, indicating that an overflow has occurred, and the next time
that the refractory period is met the neuron can fire. Fig. 4.8 shows how the
refractory memory system works. In this example, we suppose a 3x3 kernel, where
each coefficient is higher than the threshold. Therefore, after applying the kernel, 9
events would fire, and the sum operation of RCT and RPV always produces an
overflow. When t=t0 (Fig. 4.8.a), the refractory memories are empty, since no event
has been fired yet. When an input event (IE) arrives and is convolved, the sum of
RCT and RPV for each neuron produces an overflow, updating the content of the
refractory memories (Fig. 4.8.b). Regardless of the amount of IEs that arrive, the
neurons cannot fire, since they have to wait for an overflow from the RC and some
time (tlim) to meet refractory period. When an overflow occurs, the cells are
updated, subtracting 1 from their content and indicating that an overflow (tRov) has
occurred (Fig. 4.8.c). In spite of the memories update, the neurons have to wait
some time until the refractory period is met (t=tlim). When the refractory period is
met, the neurons can fire, as is shown in Fig. 4.8.d).

In a similar way as the leakage memory bank, this bank is inside convolution
engine units. Since the 8-bit resolution for all parameters consumes all memory the
resources available in the FPGA, the leakage and refractory timestamp resolutions
were reduced to 7 bits.
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FIGURE 4.8: Refractory LUTRAM mechanism.

4.4.1.2 Convolution Engine V2

The convolution engine module is a state machine that communicates with the
memory through a memory arbiter to perform the convolution. However, in the
previous version, the convolution engine performs the convolution in one clock
cycle, checking all the LLM memory content and performing the convolution. This
mechanism had a high resource consumption, which also reduced the latency.
Furthermore, the addition of RLM and RTB banks would consume more logic. In
order to reduce the resources, the convolution operation was divided into two
phases for each processing row: masks step and convolution step.

In previous sections, it was explained how the refractory period and leakage
work. In the masks step, timestamps are verified to either apply decay or determine
whether the refractory period has been met.

In SIMD processors, conditional branching is used to solve many problems, since
the threads have to stop their executions in order to check the condition and execute
the correct path. However, recent SIMD architecture threads execute all possible
conditional branches and then the correct branch operations are filtered using a
mask. Inspired by how SIMD processors work over arrays of data (Hwang, Su,
and Ni, 1981, Chen and Kaeli, 2016), the mask step generates two binary masks, one
for leakage and the other for the refractory period. The leakage mask (LM) indicates
to each neuron whether decay must be applied during convolution (logical 1) or
not (logical 0). On the other hand, the refractory mask (RM) indicates whether the
refractory period of a neuron has been met or not.

The convolution step updates the timestamps, leakage memories and refractory
period memories. Before convolution, the corresponding row values of the leakage
memory are checked, as was previously mentioned. If the leakage value is 2, the
membrane potential is reset; otherwise, the convolution operation is performed for
that neuron. During the convolution operation, the LM is multiplied by DV in
order to apply leakage to the corresponding neurons. Therefore, the convolution
operation consists in adding MP to KV and subtracting DV, if it must be applied.
However, the LIF neuron cannot fire if the refractory period is not met; thus, the
convolution operation result is multiplied by the refractory period mask. The RM is
a binary mask, which implies that, if the refractory period is not met, the result of the
convolution operation is 0, since the neuron cannot receive any kind of excitation.
Fig. 4.9 shows the computation workflow for a row convolution.

Although this implementation increments in one clock cycle the processing
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flow, the next chapters demonstrate that both the area and latency of V2 are lower
than those of the V1 version. Fig. 4.10 describes the convolution process. This
example highlights that membrane potential values are kept positive and below the
threshold. This version manages to implement all the properties of the LIF neuron,
which properties allow implementing SCNNs, as the output event rate can be
stabilized, thus an SCNN can be inferred.

FIGURE 4.9: Kernel memory structure and row generation for
convolution operation.

FIGURE 4.10: Diagram of the whole computation, with both mask
and convolution steps.
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4.5 Leaky integrate-and-fire convolution processor V3

Convolution processor V2 is able to perform 64 convolutions of one configured
kernel. Although it implements the LIF properties needed for a SCNN, it would
require to configure the processor between each layer or duplicate the hardware
to implement several layers in parallel. In addition, if less than 64 convolution
engines are used, the unused ones cannot perform convolutions of different kernel
sizes, wasting processing resources. As was previously mentioned, each convolution
engine sends output events with a CID.

However, the CID is never used for the next computation in previous designs.
The new architecture divides the convolution engines into layers, thus each group
can perform convolutions of different layers, routing the output events to the next
layer depending on its CID. This new solution allows performing multiple
convolution layers using one chip. The new architecture changes the way in which
convolution engines are configured and how output events are routed. This new
version does not change the neuron model behavior or the way in which the
computation is performed.

4.5.1 Layer mask selector module

The architecture allows configuring the maximum number of layers to be
implemented before synthesizing the design. The micro-controller configures a
layer mask, which indicates to each convolution engine which layer they belong to.
Through this mask, the convolution engines are able to select the parameters and
send output events to the next layer. Having multiple layers implies that the size of
memory registers (to store parameters) and multiplexers increases with the number
of layers. Fig. 4.11 represents an example of parameter selection for 2 convolution
engines of different layers. In this figure there are two register banks that store the
leakage and refractory period values for both layers; through layer mask (MLS),
they select the channel to read the data of the corresponding layer.

FIGURE 4.11: Parameter selection using the Layer Mask for two
convolution engines of different layers.
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4.5.2 Cycle output system

Since the convolution can be configured in groups with different kernel sizes and
the output events contain information about the convolution engine that generates
it, it is possible to perform multiple convolutions in one chip. When an event goes
out, its convolution ID is sent, indicating which convolution engine generated it.
The convolution ID with the layer mask allows the output multiplexer to route the
output event to the next layer or to the output AER bus. Following the previous
example of two convolution engines from different layers, Fig. 4.12 represents the
whole architecture schematic for two convolution engines of different layers. This
new design keeps the same convolution engine, BRAM and LUTRAM distribution
of the V2 design. However, this new version adds the parameters bank for each
layer and the output router, which sends events to the corresponding layer. Fig. 4.12
represents how events are routed between two convolution layers with pooling
enabled. This new characteristic is a novelty in this kind of processor, as other
processors need to reconfigure the system between convolution layers to load the
weights of the next layer, whereas other designs remove this reconfiguration step by
duplicating the hardware with loaded kernels, although this solution increases the
power consumption.

FIGURE 4.12: Convolution processor V3 schematic.

4.6 Frame-based to event-based image conversion

Before introducing the hardware implementation and the different performance
tests for each architecture, it is important to mention that a tool was developed
while the architecture was being designed, with the aim of converting frame-based
images to event-based images. Currently, there exist many software tools to
simulate spiking neural networks, such as NENGO (Bekolay, 2014) or BRIAN
(Goodman, 2008), and others like JAER (Delbrück, 2007) or NAVIS
(Dominguez-Morales, 2017) to visualize neuromorphic sensors output and develop
custom filters or processing layers. However, these software tools, for training
learning algorithms for image recognition, such as spiking convolutional neural
networks (SCNN), require vast datasets to obtain a good accuracy. Although there
are several event-based datasets, such as NMNIST (Orchard et al., 2015b) or
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Poker-DVS (Stromatias et al., 2017b), generating new datasets is a hard task. In
addition, during the development of the architectures presented in this chapter, it
was necessary to use synthetic AER images, such as diagonal events or a single
centered event to check the neurons activation during the convolution process. In
the literature, several methods have been proposed to convert frame-based images
to event-driven (Linares-Barranco et al., 2006, Gomez-Rodriguez and Paz, 2005),
most of which were implemented in hardware, which hindered their use in the
neuromorphic community. In order to make these methods easily accessed, they
were implemented in software by joining them in one tool, called frame to
event-based (F2EV).

Three algorithms were implemented to convert frames to event-based
representation. Each algorithm was implemented using 8-bit resolution for pixels
intensity. The inter-event-time can be configured. In Fig. 4.13, the results of the
conversion methods are shown as histograms of events.

FIGURE 4.13: From left to right: Original image and converted event-
based images using Scan, Random and Bitwise algorithms.

4.6.0.1 Scan algorithm

The Scan algorithm goes over the image as many times as the highest gray level
using a counter and checking all pixels’ intensity for each iteration. When the
intensity of the pixel is greater than the current counter value , an event is fired
with the (x,y) address of the current pixel.

4.6.0.2 Random algorithm

The Random algorithm consists of a random number coded in 22 bits, where the 14
most significant bits correspond to the position of the pixel address and the other 8
bits to the gray scale. If the gray scale of the pixel in the position given by the random
number is lower than the random gray scale generated, an event is produced. The
method finishes when the amount of random numbers generated is equal to the
number of pixels in the image times the maximum gray level. The event distribution
generated by this conversion method is the most bio-inspired among the proposed
methods, since the events follow the Poisson distribution (Blei, 2018) presented in
the human brain (Heeger and Heeger, 2000, Doya et al., 2007).

4.6.0.3 Bitwise algorithm

The Bitwise algorithm uses a counter of 22 bits that is order-inverted in each
iteration. As in the Random algorithm, 14 bits are used for the position of the pixel
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and 8 bits for the gray scale. This algorithm compares the gray scale given by the
order-inverted value of the counter with the value of the gray scale of the pixel at
the position given by the order-inverted counter. An event is produced if the gray
scale of the pixel is lower than the gray scale of the order-inverted counter. This
method provides a uniform distribution of events.

The F2EV tool helped to verify the convolution processor architecture during the
behavioral test phase. In the next section, the architectures implemented in FPGA
are tested with real-time event-based recordings.

4.7 Hardware implementation

All the designs presented were described as RTL level in System Verilog language
and synthesized with Vivado 2016.4 for a Zynq-7100 MMP platform, which is the
same platform used in the NullHop implementation. Although the NullHop Zynq
processor used both DMA channels, in this hardware implementation one channel
is used to configure the accelerator with the kernel weights and leakage parameters.
When the accelerator is configured, the events are received through AER interfaces.

Comparing the three architectures presented, V1 convolves with negative and
positive threshold values and implements the leakage property with a working
frequency of 90 MHz; however, it cannot implement a SCNN, due to the absence of
the refractory period. On the other hand, the V2 implements the refractory period
and improves the performance through a mask mechanism that reduces the FPGA
resources and increments the frequency to 100 MHz. However, it implements the
refractory period mechanism, which has a great impact on the memory resources.
The last version presented is an update of V2 that can perform the convolution of
multiple kernel sizes, implementing several layers in the same chip. Although this
design, called V3, is more flexible for deploying a SCNN than the previous version,
it needs more LUTs resources, which reduce its latency to 90 MHz, due to the
routing congestion. Table 4.1 presents the FPGA resources consumed by the three
designs.

TABLE 4.1: Convolution processor architecture resource
consumption.

V1 V2 V3
Resource Utilization Available Utilization % Utilization Available Utilization % Utilization Available Utilization %

LUT 264660 277400 0.95 247472 277400 0.89 257503 277400 0.93
LUTRAM 36788 108200 0.34 50851 108200 0.51 50851 108200 0.47

FF 122056 554800 0.22 172607 554800 0.31 179925 554800 0.32
BRAM 514 755 0.68 710 755 0.94 710 755 0.94

4.8 Benchmark scenarios

For the scenario proposed to test the different architectures, two test were developed.
The first test checks the correct behavior of the processors convolving event-based
images from a DVS recorded dataset, called Slow-Poker (Serrano-Gotarredona and
Linares-Barranco, 2015) dataset. The second test checks the behavior of V2 and V3 in
response to a fast stimulus using a fast propeller. The purpose of this experiment was
to demonstrate that the convolution processors are able to perform convolution in
real time with a high speed input from a neuromorphic vision sensor, demonstrating
that this could improve the performance for SCNN inference.
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FIGURE 4.14: Experimental hardware setup.

In Both scenarios, a Dock-SoC board was been used. This board was developed
by the RTC group and adapts the interfaces of ZYNQ-7100 to AER bus. In this
experiment, Dock-SoC is connected to a USB AER mini (Berner et al., 2007) board,
which is in charge of sending and receiving events from the FPGA and showing the
result of the convolution in JAER software (Delbrück, 2007). Fig. 4.14 shows the
setup for both experiments.

4.8.1 Slow-Poker processing test

For the initial test, the FPGA was configured to use the 64 convolution engines with
different kernel sizes in order to measure the latency from the minimum kernel
size 1x1 to the maximum size 7x7. Although there are several changes from V1 to
V3, those changes only affect one clock cycle in the processing pipeline, since both
designs work with the same clock frequency (90 MHz), and thus they have almost
the same processing time. On the other hand, V2 works with a clock frequency of
100 MHz.

As was mentioned above, there exists one case that stops the system to refresh
the leakage memory. Updating a row in the memory takes 2 clock cycles (one to
read and another one to write), taking a time of 2.3 µs for V1/V3 and 2.56 µs for
V2. Although this situation occurs sporadically, the update could coincide with the
convolution operation step. In order to get a more precise processing time of the
system, the average time to process an event was calculated after processing 10000
events from each image with different kernel sizes.

Fig. 4.15 shows the resulting processing time obtained from the test. The blue
bars (PT) represent the processing time obtained with different kernel sizes without
any leakage memory delay, which is the best case. The red bars (PT+UT) show
the worst case, which is the result of processing time plus leakage memory delay.
The orange bars (AVPT) are the average time obtained after processing 10000 events
from different poker images of the Slow-Poker-DVS dataset (Serrano-Gotarredona
and Linares-Barranco, 2015). The differences obtained between the best case and the
average time are insignificant. This demonstrates that the worst case does not have
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FIGURE 4.15: Processing time of each architecture with 64
convolution engines enabled.

FIGURE 4.16: Input event rate of each convolution processor.
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an impact on the processing time and that the behavior of the system has a tendency
towards the best case.

The results show that the worst case would be a leakage counter overflow when
processing the maximum kernel size (7x7). Comparing the time obtained with the
latency of the neuromorphic sensors, such as the DVS retina, the system should be
able to perform convolutions in real time. Fig. 4.16 represents the input event rate as
a function of kernel size. Fig. 4.17 represents the output of convolution processor V1
after applying two Sobel filters (a)) and the output of both V2 and V3 after applying
the Sobel and Gabor filters to multiple poker images (b)).

FIGURE 4.17: Slow-Poker convolution integrated during a period of
5-10 ms.

4.8.2 Fast-dot processing test

The second experiment proposed consists in detecting a dot inside a disk in a
propeller spinning at 2000 rpm. In this experiment, only processors V2 and V3 were
tested. Each processor was programmed with 64 convolution engines with a 7x7
kernel, with the aim of detecting the internal dot. The purpose of this experiment
was to characterize the behavior of the system in response to a real-time input
stimulus.

Fig. 4.18.a represents the input traffic to be processed, which has two circles: an
external circle, which corresponds to the circumference of the disk, and an internal
circle, which is the dot to be detected. Fig. 4.18.b shows a histogram of the output
events from the convolution processor, where the external circle is filtered and only
the events of the internal dot are shown, following its trajectory.
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a) b)

c) d)

FIGURE 4.18: Fastdot input events comparison with the output from
convolution processor.

In order to determine the latency between input and output events, the event
traffic behavior was analyzed. Fig. 4.18.c represents a merge between input events
(blue) and output events (yellow). As can be observed, the yellow events, which
correspond to convolved events, follow the blue events of the internal dot. A similar
representation is shown in Fig. 4.18.d, where the blue events represent the input and
the red events represent the output. The results show that the convolution operation
filters the events that do not correspond to the internal spinning dot.

Both figures shows that there is no significant delay between the input and
output events, thus it can be determined that the convolution processor can
perform convolutions in real time in response to the traffic of a DVS (Lichtsteiner,
Posch, and Delbrück, 2008) or ATIS (Posch, Matolin, and Wohlgenannt, 2011)
sensor. In order to have an equivalence with frame-based cameras, a DVS sensor
provides timing resolutions above 100 kFrames/s (Serrano-Gotarredona and
Linares-Barranco, 2013).
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4.8.3 Analysis and comparison

Regarding other implementations of event-based convolution processors in the
literature, the work presented by Serrano-Gotarredona et al., 2008 and
Camuñas-Mesa et al., 2012 also updates the neurons row-by-row. Although these
ASIC solutions are able to perform a single convolution with low latency and
power consumption, these designs have two important limitations to implement a
SCNN. The first limitation is the reduced number of convolutions they can
perform; the second limitation is that their neuron model does not implement the
refractory period, which is needed to deploy SCNNs. Another solution, such as the
one presented by Camuñas-Mesa et al., 2012, can perform up to 24 multi-kernel
convolutions in parallel. However, it still has the same problem as the previous
ASIC solutions: the refractory period is not implemented. Apart from the ASIC
implementation, other FPGA implementations, such as the one proposed by
Camuñas-Mesa et al., 2018, presents a convolutional node implemented in a
Spartan-6 FPGA based on the design presented in Linares-Barranco et al., 2010.
This implementation is able to perform 22 convolutions in parallel with the
refractory period. However, the memory is accessed pixel-by-pixel, producing
many bottlenecks and, thus, reducing the system latency.

TABLE 4.2: Comparison between event-based convolution
processors.

LIFCP-V2 LIFCP-V3 Camuñas-Mesa et al., 2018 Camuñas-Mesa et al., 2011 Camuñas-Mesa et al., 2012
Convolution Modules 64 64 22 1 24

Max Kernel Size 7x7 7x7 10x10 32x32 32x32
Muti-Kernel No Yes Yes No Yes

Platform Zynq 7000 FPGA Zynq 7000 FPGA Spartan 6 FPGA 0.35um CMOS 0.35um CMOS
Latency in-out µs 1.3-9.01 1.44-9.98 0.5-32 0.05-0.14 0.06-0.68

Input Event
Throughput (Meps)

0.11-0.77 0.10-0.69 0.05-3 1.77-20 1.47-16.6

Frequency (MHz) 100 90 50 120 100
Refractory Period/ Leakage yes/yes yes/yes yes/yes No/yes No/yes

Weights
Resolution

(bits)
8 8 8 8 4

Leakage/Refractory
resolution (bits)

7/7 7/7 8/8 -/8 -/4

Adders 7 7 22 1 24
Mop/s 348.06 314.06 68.75 7314.29 36000

Power Consumption
per

convolution module(mW)
0.92 100 0.35 200 8.3

Table 4.2 represents a comparison between the designs presented in this work
with other designs mentioned previously. The V2 and V3 implementations perform
a number of 348.06 and 314.06 MOp/s, respectively, with a power consumption per
convolution engine of 0.92 and 1.12 mW.

With respect to the number of operations, the designs presented in this work are
below ASICs, 36 GOp/s (Camuñas-Mesa et al., 2012) and 7.3 GOp/s (Camuñas-
Mesa et al., 2011). However, they surpass the FPGA implementation presented
in Camuñas-Mesa et al., 2018, which performs 68.75 Mop/s. On the other hand,
due to the fact that each convolution processor implements a different number of
convolution units, the power consumption was measured as the power consumed
per each convolution unit. In this comparison, the power consumption is lower in
FPGA implementations, which was 0.92 mW for V2, 100 mW for V3, and 0.35 mW
for Camuñas-Mesa et al., 2018.
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4.9 Summary and discussion

In this chapter, three different spiking convolution processor architectures are
presented. The main difference with other implementations seen in the literature is
the row-by-row access through a memory arbiter, which allows reducing the
memory consumption and implementing several convolution modules. The
row-by-row memory access increments the input throughput; therefore, a faster
input event traffic can be processed in real time, preventing a possible congestion,
which can slow down the system. In spite of the fact that the latency is higher than
in other FPGA processors, such as the one presented by Camuñas-Mesa et al., 2018,
the number of logical resources is higher and limits the implementation of several
convolution modules in small FPGAs, such as MiniZed or ZedBoard.

The aim of the architectures presented is to allow the inference of SCNNs in the
future. Although there are several methods to train SCNNs, such as the one
presented by Liu and Furber, 2016 and Kheradpisheh et al., 2018, and it is also
necessary to study how to scale the trained weights to fit in 8-bit resolution without
losing much accuracy. Apart from accuracy, the complexity of inferring a SCNN
lies in the configuration of the parameters, such as the refractory period and
leakage. One possible innovation to be added in the designs of this work would be
to incorporate a mechanism to configure those parameters automatically as a
function of the input and output event rates. The next chapter describes an
alternative technique for event-based vision feature extraction that can be
implemented in small VLSI systems with low power consumption.
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Chapter 5

Pattern Recognition Based on Time
Surfaces in Real Time

"Imagination is more important than
knowledge. Knowledge is limited.
Imagination encircles the world."

Albert Einstein

Previous chapters described spiking convolution as one approach to pattern
recognition for the event-based processing paradigm. However, this kind of
approach emulates the behavior of LIF neuron models, which require a large
number of resources to be implemented and does not directly make use of rich
timing information provided by the events. Although most event-based pattern
recognition systems are based on spiking neural networks (Lee, Delbruck, and
Pfeiffer, 2016, Shrestha and Orchard, 2018, Stromatias et al., 2017a), other methods
integrate dynamical information of neuromorphic vision sensors to recognize
patterns (Jhuang et al., 2007, Sironi et al., 2018) or combine frame-based and
event-based information (Liu et al., 2016), fusing both data. Recent works, such as
the one presented by Lagorce et al., 2017, propose a new concept, called time
surfaces, which takes into consideration the past activity of incoming event
neighborhoods. This approach works directly over the timing and spatial
information of events, recognizing features from input events. This algorithm is
called hierarchy of time surface (HOTS), since time surfaces can be organized in a
hierarchical way to extract patterns. Currently there are several neuromorphic
platforms, such as Spinnaker (Furber et al., 2013), BrainScale (Schmitt et al., 2017),
IBM TrueNorth (Akopyan et al., 2015) or Intel Loihi (Lin et al., 2018), to deploy this
kind of technique. These hardware platforms are able to implement scalable
networks by connecting multiple boards with a maximum of 460 million neurons
and 460 billion synapses, with a power consumption between 100 mW and 50 kW
(Furber, 2016a). However, these solutions are not ideal for embedded systems, due
to their size, latency and power consumption.

This chapter presents a novel architecture that implements the HOTS algorithm
for FPGAs. This implementation poses a new hardware approach in event-based
pattern recognition systems. Furthermore, a new event-based memory model for
neuromorphic systems is presented; this memory works in a similar way as cache
memories, storing the most recent events, and reducing memory resources
consumption and latency.
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5.1 Hierarchy of the time surface algorithm

5.1.1 Time surface

The HOTS algorithm is based on time surfaces, which extract a pattern from the
events of a scene. A time surface describes the spatio-temporal activity of a
neighborhood around the last received event ek. As is explained in previous
chapters, an event consists of a tuple of four values: an (x,y) address, which
corresponds to the spatial location; a timestamp (ts), which is the time in ticks of
microseconds when the event was received; and a polarity (p), which is ON if
luminosity increases or OFF if luminosity decreases. An event can be described as
follows:

ek = [x, y, p, ts] (5.1)

The first step to create a time surface is to compute the time difference between
the input event ek and its neighborhood. This time difference is known as time
context. A time context T k(u,p) of the event ek represents the square region of
interest (ROI) centered in ek, of spatial coordinate xi=[xk,yk], and it is the difference
between ek timestamp and the timestamps of the most recent neighbors. The square
ROI has a dimension of (2R + 1) x (2R + 1). Mathematically, the time context can be
expressed as:

Tk(u, p) = {tk − t|t = max{tj|xj = (xi + u), pj = p}} (5.2)

Where u = [ux,uy] is such that ux ∈ [-R,R] and uy ∈ [-R,R].
Time surface Sk(u, p) associated with the event ek, is obtained by applying an

exponential or lineal decay kernel of time-constant τ to the time context T k. There
are several ways to apply a decay kernel to the time-context, the most common ones
are exponential decay (Equation 5.3) and linear decay (Equation 5.4).

Sk(u, p) = e(−(ti−Ti(u,p))/τ) (5.3)

Sk(u, p) =

{
1− Ti(u,p))

τ , if Ti(u, p) < τ

0, otherwise
(5.4)

The resulting time surface represents the spatio-temporal activity of the
incoming events. However, since a time surface is computed for each new
incoming event, there is a possibility that the computed time surface does not have
enough neighbor timestamps; therefore, the resulting time surface would not
contain useful information and it would waste resources. In order to limit this
effect, time surfaces are discarded if they do not contain enough information, since
this information will be part of a later time surface as soon as a new event is
emitted in the spatio-temporal neighborhood. A time surface will be processed if it
satisfies the next condition:

u,p

∑ Sk(u, p) > 2R (5.5)

The condition shown in Equation 5.5 ensures that there will be enough neighbors
before processing the time surface, with a minimum number of neighbors equal to
the size of the square ROI.
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Information from time surfaces is not useful unless it is compared with well-
known patterns. The next section explains how a network is built in order to extract
patterns from an input scene. In this work, linear decay was implemented, since
the operations to be performed are simpler, as it only consists of a division and a
subtraction.

5.1.2 Hierarchical time surface network

Time surfaces can be trained and organized in a hierarchical way to extract features.
Trained time surfaces are called prototypes and each one represents a pattern.
Prototypes are organized in banks, composing a HOTS layer. The layer properties
are listed below:

• N: the number of learned prototypes in a layer

• R: the radius size of the time surface

• τ: the time constant kernel decay applied to the events

When a time surface is created from an input event, it is compared with the
bank of prototypes of a layer, in order to obtain the matching prototype. A distance
algorithm, such as the Euclidean distance or the cosine distance can be used. The
prototype with the shortest distance is the matching one.

FIGURE 5.1: HOTS layer processing workflow.

Then, an event is generated with the same (x,y) address and timestamp.
However, the event polarity pk is modified so that pk = c, where c is the ID of the
matching prototype. Thus, the event encodes a pattern instead of ON/OFF
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polarity. The output event can be used to feed a second layer that processes the
event in a similar way, although the second layer combines the features of the
previous layer. Otherwise, the output events can be integrated over time,
generating a histogram of activated features that can be used by a classifier.

Fig. 5.1 shows an example of a processing pipeline for a one-layer HOTS
implementation used in this work. The sensor sends a stream of events with (x,y)
addresses and an ON/OFF polarity from a captured stimulus (Fig. 5.1.a). The time
surface is generated as a result of applying a decay kernel to the time context of the
ROI (Fig. 5.1.b). A comparison between the generated time surface with the bank of
prototypes is performed to determine the closest pattern. The closest prototype will
send out an event with the same (x,y) but with its corresponding ID. Finally, events
are sent out to another layer, or integrated over time to generate a histogram to be
processed by a classifier (Fig. 5.1.c), as was previously mentioned.

5.2 FPGA HOTS accelerator

This chapter describes a novel FPGA architecture to infer the HOTS algorithm in
real time. The design has a similar configuration system as described in previous
chapters for spiking convolution accelerators; it has an AXI connector of 32 bits
embedded to an ARM processor, which is in charge of configuring the different
modules. On the other hand, there are also two AER buses of 16 bits that receive
events from a sensor and send out the result of the classification.

FIGURE 5.2: Example of HOTS histograms. Image taken from
(Lagorce et al., 2017).

In previous sections, it was explained that two types of decay kernels can be
applied to the events: linear or exponential decay. Although both solutions are
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valid to implement the HOTS algorithm, exponential decay requires more
hardware resources, which implies more power consumption, due to the fact that
the computation operations performed are complex. Therefore, in this architecture,
a linear decay was implemented to generate the time surfaces from input events.

When an event is received from a sensor, the time surface generator module
creates the time surface from an incoming event and its neighbors. The resulting
time surface is sent pixel-by-pixel to the Euclidean estimator module, which
computes the Euclidean distance with the prototypes, accumulating the partial
differences. When all partial differences for all pixels in a radius R are compared,
the square root module computes the square root, obtaining the Euclidean distance
for a given prototype. Then, all distances are compared, in order to determine the
minimum one that corresponds to the matching pattern. Finally, an event is
generated with the same (x,y) address and timestamp as the input event. However,
the polarity is replaced by the ID of the matching prototype. Output events are
accumulated in a histogram, which, over an integration period, is compared with
histograms obtained during the network training, classifying the input. Fig. 5.2
shows an example of histograms obtained during the event processing of four
poker symbols.

The second purpose of the time surface generator is to create the time surface to
be compared with prototypes. Incoming event timestamps are stored in a BRAM
memory, in order to characterize the timing behavior. The (x,y) addresses of
incoming events are used with radius R to determine the spatial neighborhood.
Each pixel timestamp is read, obtaining the time context as a result of the difference
between input event timestamp and the timestamp of the corresponding neighbor,
then the linear decay is applied using a configurable τ value, following
Equation 5.4.

5.2.1 Time surface generator module

The time surface generator module is in charge of two processes: the first one is
to assign a timestamp to each incoming event. Most neuromorphic vision sensors,
such as ATIS or DAVIS, send events and timestamps through USB, this fact makes
it easier to read information from these sensors, facilitating the connection between
different devices.

FIGURE 5.3: Time surface generator module.
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However, it also hinders the integration in embedded systems, since USB needs
drivers and software frameworks, such as CAER1, that increment the latency to
read events. Apart from this problem, since these sensors use 32-bit timestamps, a
large connector would be needed to receive the information. Assigning timestamp
values in hardware allows connecting the sensor directly to the FPGA, reading
events directly from the sensor, thus reducing the latency and the size of the
connector. Fig. 5.3 shows a diagram of the time surface generator module.

5.2.2 Euclidean distance estimator

The Euclidean distance is defined as the length of the segment that joins two points
in the plane. With p = (p1, p2,..., pn) and q = (q1, q2,..., qn), two points in Euclidean
n-space, distance (d) from p to q, or q to p, the Euclidean distance is mathematically
described as follows:

d(p, q) = d(q, p) =
√
(p1 − q1)2 + (p2 − q2)2 + (pn − qn)2 =

√
n

∑
i=1

(pi − qi)2 (5.6)

This distance equation has been applied in several classification algorithms,
such as K-means or support vector machines, to determine the closest pattern.
However, although the Euclidean distance equation is easy to implement and
execute by a computer, the square root is hard to implement in an embedded
solution. In spite of this problem, most square root hardware implementations are
developed using high level tools, such as Vivado High level synthesis or Intel High
level synthesis tools. Although these tools are able to implement the square root
function, the resulting implementation usually consumes a large amount of FPGA
resources. In the architecture designed, two implementations based on Babylonian
square computation and non-restoring square root computation were studied. The
Euclidean distance estimator (EDE) consists of two modules to compute the
Euclidean distance between time surface and prototypes, the difference distance
computation and the square root modules. Fig . 5.4 shows the whole architecture of
the Euclidean distance estimator module.

FIGURE 5.4: Euclidean distance estimator module.

1CAER is an adapted version of JAER software written in C language for embedded systems.
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5.2.2.1 Difference distance computation module

The main problem in digital design is how the computation is performed. Although
floating point arithmetic usually gives less errors than fixed-point arithmetic, it is
more complex to implement in HDL language and it usually needs more hardware
resources. The architecture proposed works with fixed-point arithmetic, which can
be configured from 16 to 64 bits before synthesizing.

The difference distance computation module computes the square difference
between the incoming time surface of a pixel and the corresponding time surface
prototype pixel stored in the LUTRAM memory of the FPGA, following the
Euclidean equation (Equation 5.6). Each partial square difference is accumulated
for all pixels; when all pixels in the square neighborhood of size (2R+1)x(2R+1)
have been processed, the accumulated value is sent to the square root module to
obtain the Euclidean distance.

5.2.2.2 Babylonian square root module

The square root modules compute the square root of the total sum of the time surface
difference with the prototypes. During the development of the architecture, two
different mechanisms were studied to implement the square root computation: the
Babylonian method and non-restoring square root implementation.

The Babylonian method (Fowler and Robson, 1998) is an algorithm that is easily
implemented in VLSI circuits. Given a number N, whose square root will be found,
the algorithm will iterate a number of times following the next equation:

Li =
Li−1 + N/Li−1

2
(5.7)

Where L is an initial value, which usually is half of N, and N is the number
whose square root will be computed. The Babylonian method iterates a number of
times until the algorithm converges. A larger number of iterations implies that
better values of the square will be obtained. Although this algorithm does not
implement complex operations, its accuracy depends directly on the number of
iterations performed. Therefore, this algorithm was discarded, as it computes an
approximation of the resulting square root, and it can be far from the original
solution, giving imprecise accuracy results. Apart from the problem mentioned
previously, the implementation of the division operation of N and Li-1 in
fixed-point is complex and it needs a large number of hardware resources, unless
the division is computed using a constant value as the divider.

5.2.2.3 Non-restoring square root module

The other evaluated mechanism to compute the square root of a number is the
non-restoring square root (Li and Chu, 1996), which computes the square root of
a number represented in 2’s complement.

The non-restoring algorithm is an iterative square root algorithm that generates
one bit of a result in each iteration using the two most significant bits of the input
data. The partial dividend used in each iteration is determined with the remainder
of the previous iteration and appending the two most significant bit to the least
significant position of the remainder. The stage quotient is computed by shifting
one bit the quotient of the previous iteration, and it is appended to the new bit value,
the subtrahend is determined as the previous iteration quotient shifted by two and
appended to the new predicted quotient bit value.
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If the value of the new dividend is greater than the subtrahend, then the predicted
value is accepted and the difference is forwarded as the remainder for the next
iteration; otherwise, the new quotient bit is assumed to be zero and the constructed
dividend is directly forwarded as the remainder of the current iteration. An iteration
of the algorithm generates one bit of the square root, and thus it is needed to perform
multiple iterations storing the partial results.

Algorithm 1 Non-restoring square root algorithm
1: D ← 0;
2: Q← 0;
3: R← 0;
4: for i ∈ {0, . . . , 15} do
5: if R >=0 then
6: R←(R << 2) or (D >> (i+1)&3);
7: R←R-((Q<<2) or 1);
8: else
9: R←(R<<2) or (D >> (i+1)&3);

10: R←R-((Q<<2) or 3);
11: end if
12: if R >=0 then
13: Q←((Q<<1) or 1);
14: else
15: Q←((Q<<1) or 0);
16: end if
17: end for

FIGURE 5.5: Non-restoring schematic.
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Although this algorithm has multiple implementations, there are efficient
implementations in the literature, such as the one presented by Sutikno et al., 2014
and Piromsopa, Arporntewan, and Chongstitvatana, 2001, who proposed an
efficient way to implement the algorithm in VLSI systems. As can be observed in
Algorithm 1, the operations performed by the algorithm only consist in bit shifting,
bit masking, bit comparison, addition and subtraction operations. In other words,
these operations can be easily performed using an arithmetic logic unit (ALU).
Fig. 5.5 shows the hardware schematic of the square root system; the operations
performed are simple, its result does not depend on the number of iterations, and it
does not need a huge amount of hardware resources. This algorithm is the one
implemented for the square root module.

When the Euclidean distance is computed, the minimum Euclidean distance
value of each Euclidean distance estimator module is selected, obtaining the
matching pattern. The number of Euclidean distance estimator modules depends
on the number of prototypes of each layer and they work in parallel, processing the
input time surfaces. Each module in this design works in a pipeline way, whereas
the time surface generator module computes the next time surface of a pixel, and
the Euclidean distance modules compute the distance of the previous pixel time
surface

5.2.3 Histograms integration and compare modules

FIGURE 5.6: Histograms generator and comparator module (HGCM).

The output events encode a pattern within their (x,y) address, instead of an
ON/OFF polarity, from here onward they will be called pattern events, being
integrated for a period of time that matches the τ value of the last layer. In the
design presented, the output events histogram is generated through several
counters that increment their value with the arrival of a pattern event. These
counters are called pattern counters. Pattern counters match the number of possible
patterns that an event can encode in the HOTS network. The resulting histogram
stored in the pattern counters is compared with trained histograms. These
histograms are stored in a bank of registers. After the integration period is met, a
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global counter asserts the integrate signal, computing the nearest neighbor
algorithm (K-NN) between histograms using the Euclidean distance through EDE
modules, which were previously described, and resetting the counters for a new
histogram integration while the system is still receiving. However, the previous
EDE takes the data pixel-by-pixel, as it needs the time-surface value. The EDE
implemented in this module processes the square differences for all the columns of
the histograms in one clock cycle, reducing the latency, then the square root is
computed. After the Euclidean distance is computed, the classification result
corresponds to the closest histograms and it is sent out through AER bus. Fig. 5.6
shows an example of the histograms generator and comparator module (HGCM)
for 5 different patterns and 4 features to be classified.

5.2.4 Hardware implementation

The name of the architecture implemented is F-HOTS and it has been described as
RTL with System Verilog language and synthesized for a Zynq-7100(xc7z100-2)
MMP and Zedboard (xc7020clg482) platforms using Vivado 2016.4. The
implementation works with a maximum clock frequency of 100 MHz. The whole
platform architecture, which is shown in Fig. 5.7, including the PS and the PL
requires a power consumption of 1.6 W. For our implementation, the ARM
processors need 1.533 W and the remaining 77 mW are consumed by the FPGA
logic. These power consumptions were measured with Xilinx power tool after the
implementation, assuming a toogle rate of 50% of the signals, what is higher than
normal operation.

FIGURE 5.7: F-HOTS global architecture.

The ARM has the same function as in convolution spiking processors: it is in
charge of configuring the layer with the different prototypes and the parameters
(Radius, tau), whereas AER interfaces communicate with neuromorphic sensors,
sending or receiving events. In this design, the dock SoC board has also been used
(Aimar et al., 2018, Rios-Navarro et al., 2018).

Although the design was tested in a large platform, due to the AER interface
adaptation, the system presented can fit in a smaller FPGA, such as the one available
at the Zedboard. Table. 5.1 shows the percentage of resources used in Zynq-7100 and
Zedboard FPGAs. The next section presents some tests to characterize the system in
terms of accuracy and performance.
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TABLE 5.1: PS + PL resource utilization for 16-bit resolution.

Zedboard (xc7020clg482) Zynq7000 (xc7z100ffg2)
LUT 8313 / 53200 (15.6%) 8351 / 277400 (3%)

LUTRAM 2879 / 17400 (16.5%) 2872 / 108200 (2.6%)
FF 5627 / 106400 (5.2%) 6092 / 554800 (1.1%)

DSP 46 / 220 (20%) 46 / 2020 (2%)
BRAM 18 / 140 (12.8%) 18 / 755 (2%)

5.2.5 Experimental results

5.2.5.1 Pattern recognition test

The F-HOTS architecture was tested with the processing of events from the
NavGestures-sit database, in order to compare the accuracy error produced
between the software implementation and the F-HOTS implementation. The
NavGestures-sit dataset has 6 hand gestures: Right, Left, Up, Down, "Hello-hand"
and Select, as shown in Fig. 5.8. This dataset was first used to test this network,
whose parameters are: τ = 10ms, R = 2 and N = 8.

FIGURE 5.8: Hands gestures from a to g: Left, Right, Hello Hand, Up,
Down, Select.

This network was previously tested on this dataset in a mobile phone
implementation (Maro and Benosman, 2018), obtaining an accuracy of 94.5%. The
experimental setup was the one used during the development of the spiking
convolution processors. It consists of an AERtool, which receives events from the
computer through USB packets and sends them using an AER interface to the
Zynq, where the events are processed. Output events are collected by the
USBAERmini2 board Berner et al., 2007 through JAER software (Delbrück, 2007).
The purpose of this experiment was to characterize the behavior of the system with
the NavGestures-sit dataset mentioned previously, measuring the accuracy against
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the software implementation. The addresses of the events from NavGestures-sit
were scaled to 128x128 resolution to fit in the AER connector. As was already
mentioned, the computation error depends directly on two factors: the bit
resolution and the operations performed.

In fixed-point operations, it is quite common to lose some precision due to
several factors, such as bit truncation or resolution. In this work, the accuracy loss
obtained by the architecture after processing the dataset using different fixed-point
resolution was measured. The computation resolutions used in this experiment
were 16, 32 and 64 bits in Qn.m notation, where n bits were for the integer part and
m for the decimal part. In this work, n corresponds to the bits of the upper half of
the resolution, whereas m is the lower-half bits; e.g., for 16 bits, n is the 8 most
significant bits, and m is the 8 least significant bits. The average accuracy loss
obtained for NavGestures-sit for each resolution was 1.2%, 0.78% and 0.4%,
respectively, with respect to the classification obtained in software implementation
presented in Maro and Benosman, 2018. Table 5.2 presents the accuracy results
obtained for each bit resolution.

TABLE 5.2: Accuracy comparison with different numerical precision.

Maro and Benosman, 2018 Q8.8 Q16.16 Q32.32
NavGestures-sit 94.5% 93.3% 93.72% 94.1%

The computation error produced is due to fixed-point arithmetic. Multiplication
operations have a loss of accuracy. In the design presented, two multiplications are
performed, one in the time surface generator module and another one in the
Euclidean distance estimator module. However, time surface multiplication is not
the main problem. The Euclidean estimator module performs several
multiplications depending on the R value. Therefore, the error is accumulated.
Furthermore, after each multiplication step, words are truncated to match with the
bit resolution, and bit truncation carries a loss in the resolution, as some decimals
are lost. Table 5.2 shows that increasing the bit resolution does not have a
significant effect on the accuracy.

TABLE 5.3: Programmable logic resources as a function of numerical
precision.

Zynq7000 (xc7z100ffg2)
Resolution Q8.8 Q16.16 Q32.32

LUT 3% 4.22% 4.68%
LUTRAM 0.31% 0.36% 1.67%

FF 0.34% 0.38% 0.48%
DSP 2% 3.23% 6.92%

BRAM 2.12% 2.12% 2.12%
Zedboard (xc7020clg482)

Resolution Q8.8 Q16.16 Q32.32
LUT 15.6% 16.7% 22.01%

LUTRAM 7.43% 8.41% 10.37%
FF 1.62% 1.88% 2.41%

DSP 20.2% 34.09% 64.45%
BRAM 11.43% 11.43% 11.43%
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Additionally, even if bit resolution increases, the accuracy loss does not decrease
significantly and it would imply more consumption of hardware resources.
Table 5.3 shows the hardware consumption for each bit resolution. Regarding the
table results, LUT and LUTRAM resources increase as a function of bit resolution,
due to the fact that buses and memories increase their size. On the other hand,
there is a critical resource that is limited in small devices: the DSPs. As was
previously mentioned, the accuracy obtained from resolution over 16 bits is
insignificant. However, bit resolutions higher above 16 bits have a great impact on
DSP consumption for small devices, making it difficult to implement a multi-layer
version in a small FPGA, as can be seen in Zedboard implementation, where more
than 50% of the DSPs are used for 64-bit resolution. Therefore, the ideal
implementation, according to these results, is a 16-bit resolution implementation,
since the DSP consumption is ideal for future multi-layer implementations,
obtaining good accuracy results that do not differ significantly with the other bit
resolutions.

FIGURE 5.9: Power consumption of FPGA components for each bit
resolution.

Regarding the power consumption, as was already mentioned, the increment of
bit resolution implies an increment of DSP and signals. This affects the power
consumption directly, as can be seen in Fig. 5.9, which shows the power
consumption for each different component of the FPGA. The total power
consumption for each different resolution is: 77 mW for 16 bits, 99 mW for 32 bits,
and 199 mW for 64 bits.

5.2.5.2 Performance test

The purpose of the second experiment was to characterize the response of the
accelerator to fast stimuli. In the previous chapter, a spinning dot was used in
convolution spiking processors; here, the same experiment was performed with the
processing of events with different radius. In this experiment, the processing time
was measured with different R values, from 1 to 8. The latency of the design
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depends directly on the square radius ((2R+1)*(2R+1)) to be processed, since large R
values imply that more memory accesses are performed. On the other hand, small
R values imply less memory access and, consequently, a small latency. In
neuromorphic systems, the supported throughput (Ev/s) from sensors is also
important, since it indicates the throughput that the system is able to compute, as
was done with spiking convolution processors. Therefore, the spinning dot image
is ideal, since it presents a high input throughput to test the limit of the F-HOTS
architecture.

In this experiment, the processing pipeline until the generation of the histograms
was measured, since the complex computation is focused on event pattern extraction
and classification. This occurs sporadically when the integration period is met,
taking around 0.5 µs, does not affect to the pattern extraction. Fig. 5.10 shows how
the R value affects both the processing time and the input throughput. Furthermore,
regarding the plot shown in Fig. 5.10, the smallest radius to be processed is for R =
1. This scenario represents the best case, due few pixels are processed. The latency
obtained for this scenario is 1 µs and an input throughput of 1 Mev/s. On the other
hand, the worst scenario is for the maximum radius of 8, as several memory accesses
are performed, increasing the latency to 6.6 µs with an input throughput of 0.15
Mev/s.

FIGURE 5.10: Left axis: Processing time per event with different
radius. Right axis: Mega events per second of evolution for each

different radius.

Another important factor to consider in hardware accelerators is the number of
operations per second. The time surface generator module (TSG) computes a
division and a subtraction for each pixel in the square neighbors of radius R,
whereas each Euclidean estimator module (ESM) computes two subtractions, one
multiplication and one addition for each pixel in the square neighbor and number
of prototypes (N) in parallel. Finally, the nonlinear square module (NLS) computes
one addition/subtraction and a shift operation. The total number of operations
performed by F-HOTS architecture is expressed in Equation 5.8, where R is the
radius, N is the number of prototypes and T is the time to process an event:

MOp/s =
(

Square neighborhood︷ ︸︸ ︷
(2R + 1 ∗ 2R + 1) ∗(

TSG︷︸︸︷
2 +

ESM︷︸︸︷
4 ∗N)) +

NLS︷︸︸︷
2 ∗N

T
(5.8)
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FIGURE 5.11: Left axis: Mops/s performed with different radius,
with frequency of 100 MHz. Right axis: memory accesses performed.

Fig. 5.11 shows the number of operations per second (Ops/s) with the number
of memory accesses for different kernel radius. As shown in Fig. 5.11, the Mops/s
increases significantly for each different R value up to 6. At that point, the
performance does not depend on memory bandwidth (memory access), but on
computation units. In other words, the performance reaches its limit at
approximately 1600 Mops/s, due to the number of computation elements.

5.2.6 Comparison and discussion

The F-HOTS implementation poses a novelty in the state-of-the-art of pattern
recognizing event-based processing, due to the novel HOTS algorithm and the low
power consumption. there are other pattern recognition systems in the literature,
such as the one presented in Amir et al., 2017 where an event-based gesture
recognition is implemented in IBM TrueNorth using spiking convolutional neural
networks. The approach presented works over the DVS gesture dataset, obtaining
accuracy results of 94.59% for 10 categories, and 96.49% for 11 categories. However,
the implementation requires a vast amount of neurons, which implies a power
consumption of 178.8 mW. Although the accuracy obtained is higher and the
system classifies more categories than the system presented in this chapter, its
power consumption is higher than that of F-HOTS.

Other works, such as the one presented by Camuñas-Mesa et al., 2018, also
implement a spiking convolutional neural networks in an FPGA platform, obtaining
an accuracy of 96%. However, the solution presented is not able to maintain that
accuracy, which decays to 63% when processing events in real time.

The F-HOTS architecture memory usage can be upgraded to perform a
multilayer version. Although the BRAM memory is not a limitation in the design
presented, a large part of the memory is unused, due to the sparse output of
neuromorphic vision sensors. In most neuromorphic vision systems, the memory is
as large as the spatial resolution of the sensor, in order to store all possible incoming
pixels. However, some algorithms, such as HOTS, only consider recent events.
Therefore, a memory model that only stores recent events and can access them in
parallel would reduce the memory size and latency. The next section presents a
memory model for event-based systems with the previously described properties.
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5.3 Event-based time configurable memory

In neural networks, one of the critical aspects is memory access, as it reduces the
latency to deploy them in real time. Within deep learning, CNN architectures use
new compression methods and techniques, to reduce both memory size and
accesses. On the other hand, in neuromorphic engineering, there are several
memory topologies focused on improving the performance of spiking systems in
order to increase the number of neurons and synapses (Indiveri and Liu, 2015). On
the other hand, other works focus in the new promising Memristor (Li et al., 2015,
Zhang et al., 2018) or resistive switching memory (RRAM) (Ielmini, 2018,Wu et al.,
2017) technology, which can emulate neuron behavior, such as spike-timing
dependent plasticity (STDP) (Shouval, Wang, and Wittenberg, 2010, Dan and Poo,
2004) and spike-rate dependent plasticity (SRDP) (Rachmuth et al., 2011, Dong
et al., 2016), which is better than the current complementary
metal-oxide-semiconductor (CMOS) technology (Smith, McDaid, and Hall, 2014).
However, a large number of event-based processing systems mentioned previously
need vast memories to store the state for all the pixels of a vision sensor. However,
due to the sparse output given by this kind of sensor, part of the memory is wasted,
as is shown in Fig. 5.12.

FIGURE 5.12: Number of events in windows of 5ms (blue) and
maximum stored events in a memory of 2048 addresses (orange).



5.3. Event-based time configurable memory 81

The previous HOTS implementation was based on RAM memory, where each
pixel had an address, consuming a lot of memory space. From here onward, RAM
memory will refer to this kind of memory topology.

Recent works, such as presented by Khodamoradi and Kastner, 2018, propose a
memory model to reduce utilization, updating the rows and columns of the
memory with the new incoming event, and thus reducing the memory resources in
an FPGA. In the previous section of this chapter, a one-layer HOTS was
implemented in FPGA, since a one-layer HOTS does not require many hardware
resources and there were enough BRAM memories. However, in multi-layer
implementations of HOTS algorithm, apart from DSPs, memory resources are
critical, due to the availability and latency. Regarding the availability, each
intermediate prototype has to store its output events, in order to generate the time
surfaces for the next layer; therefore in multi-layer implementation with several
prototypes, as shown in Fig. 5.13, the lack of memory resources is a great problem.
Additionally, in HOTS algorithm, there are many memory bottlenecks that increase
the latency, as several memory accesses are performed to read the data of the input
event neighborhood.

FIGURE 5.13: Multi-layer HOTS implementation composed of 3
layers. Image taken from (Lagorce et al., 2017)

In this section, a new memory model is proposed, which stores the most recent
events, reducing the amount of memory resources, and sends the neighbors directly
in one clock cycle, reducing the latency.

5.3.1 Memory Model

In computer architecture, cache memories store the recently accessed data following
the principles of temporal and spatial localities, in order to avoid accessing the global
memory. The spatial and temporal localities are defined below:

• Temporal locality: if a memory location is accessed, it will be probably
referenced in the near future since there is a temporal relation with the
current location.

• Spatial locality: if an accessed memory position is referenced, it is likely that
its neighbor positions will be accessed.
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Applying the same concept of cache memories to event-based processing, a
memory model, which stores recent events, can be developed. An analogy between
events and data can be done, since an event generated from a pixel whose
luminosity has changed recently will have to be processed in a short period of time
by an algorithm, and the recent stored events are probably neighbors of the next
incoming event. The memory model presented in this chapter is based on cache
memories, which compare the timestamps of the stored events with the timestamp
of the incoming event, in order to update the memory content, storing the most
recent events. The event-based cache memory stores the (x,y) address with its
corresponding timestamp. When a new event arrives, each event’s timestamp is
compared with the incoming one. If the difference between the timestamp of the
incoming event and the one stored in the memory is greater than a configurable
value, named timestamp difference value (TDV), older events are erased and the
memory is shifted, replacing the erased events and updating a memory pointer that
points to the next available memory address (Fig. 5.14.a). The TDV allows
controlling the number of events to be stored and the time difference between
them, greater TDVs imply that several events will be stored, whereas lower values
will store only the most recent events. Then, a square neighborhood focused on the
incoming event is sent out to be processed by another module (Fig. 5.14.b).

FIGURE 5.14: Event-based timing memory workflow.

5.3.2 VLSI implementation

This chapter presents two different implementations of this memory for VLSI
systems. The first implementation reads all the data of the memory cycle–by-cycle,
updating the memory content. On the other hand, the second implementation
accesses all the data, updating the memory content in two clock cycles. The
working pipeline of both designs is explained in detail in the following subsections.

5.3.2.1 Sequential memory model

The sequential implementation reads events from the memory one by one and
compares them with the new incoming event. If the read event is older than the
incoming one, it is erased from the memory. When all the memory content has been
read, the memory is shifted to replace the blank spaces of the erased events. This
memory model can be implemented using either register or BRAM memory
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technology. Although memory resource consumption is low, this implementation
poses a great problem, since the memory reads all its content, even if it is almost
empty.

5.3.2.2 Parallel read memory model

The parallel implementation reads all the events from the memory in one clock cycle
and compares them with the incoming event. The behavior of the memory is the
same as in the previous case: events older than the incoming event are erased and
the memory content is shifted to leave all blank spaces at the end of the memory.
For the proposed implementation, parallel read memory takes two clock cycles, one
cycle to read and group the square neighborhood, and a second cycle to update
the memory. In order to access all the data in parallel, each memory position is a
register that can be read in parallel. This version has the opposite problem with
respect to the sequential version, since it has a fixed latency regardless of memory
usage. However, it requires several logical resources to implement a small memory,
since a large amount of data has to be accessed in parallel.

An algorithm such as HOTS can make use of this kind of memory, as this
algorithm considers the timing activity of neighbors. In order to test the viability of
the proposed memory, some theoretical tests were developed, as described in the
next subsections.

5.3.3 Experiments and Results

With the aim of testing the memory model, two different experiments were
performed. The first experiment consists of replacing memories of the FPGA
implementation previously presented with the parallel read memory to determine
its behavior and measure its performance. Then, the memory model was tested
under a multi-layer hots implementation with different τ values.

5.3.3.1 One-layer experiment

The gesture-recognizing HOTS network used in previous sections, implements
RAM-based memory to store the incoming events and generate the time surfaces.
In this experiment, RAM-based memory is replaced with the parallel read memory
model, in order to compare the error produced with different TDVs.

FIGURE 5.15: Parallel read memory size vs classification error.
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As is shown in Fig. 5.15 the accuracy error is around 0 for a memory of 756 Kb
with a TDV greater than 18 ms. High TDVs imply a greater memory size to store
events without erasing many events. RAM-based HOTS requires a memory of
3562 Kb. On the other hand, parallel read memory model reduces the memory
consumption for this implementation to 79%.

Apart from memory consumption, another important factor is the memory
accesses. Regardless of the radius, the parallel read memory requires two clock
cycles, which reduces considerably the latency. Fig. 5.16 shows the latency
comparison between an FPGA implementation using RAM-based memory with the
implementation that uses parallel read memory using different kernel radius.

FIGURE 5.16: FPGA latency and throughput with parallel read
memory (discontinued line) and RAM memory (continuous line).

FIGURE 5.17: FPGA memory access of parallel read memory (orange
line) and RAM memory (blue line) .

Since the number of cycles is constant, there are no variations in the latency or
input event throughput. Fig. 5.17 shows the memory accesses with different radius
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of both memories; it can be observed that the number of memory accesses of the
parallel read memory is constant regardless of the radius.

5.3.3.2 Multi-layer experiment

The memory resource reduction does not seem to have a great impact, since only
one memory is used in one-layer implementation. However, in a multi-layer HOTS
implementation, the memory increases with the number of prototypes, thus the
memory consumption can decrease using the parallel read memory model. Table 5.4
shows the properties of the multi-layer HOTS network used in this experiment.
The purpose of this experiment was to determine the minimum memory required
to implement these networks in order to obtain the same surfaces as RAM-based
HOTS.

TABLE 5.4: Properties of HOTS layers used in this experiment.

Network
Layer 0 Layer 1

N R Tau N R Tau
A 8 2 10ms 8 2 100ms
B 8 2 10ms 8 2 200ms
C 8 2 10ms 8 2 400ms
D 8 2 10ms 8 2 800ms

As was previously mentioned, larger values of tau imply longer integration time,
thus larger memories are needed to avoid the loss of significant events. In the
one-layer HOTS, only one memory is needed to store the timestamps of the input
events, generating a time surface and comparing it with the prototypes. Although
in one-layer HOTS implementation pattern events from prototypes are used to feed
a classifier, in a multi-layered HOTS the pattern events are stored in memories,
grouping the events by patterns. Therefore, these networks require one memory for
input events and eight memories for the output patterns of the first layer. Although
the first layer of multi-layered networks does not require much time to integrate
events, the second layer needs longer time periods to integrate events. Therefore,
the TDVs of the memories are set to the τ value of the second layer.

Apart from latency, which was demonstrated in the previous section, the size of
each memory used in these networks to avoid losing accuracy is 1024 Kb, assuming
32 bits for event addresses and 32 bits for timestamps. Since in A and B layers the
memory is never full, this memory is not forced to erase events. In layers C and D,
since the tau value is higher (400 ms and 800 ms), the memories become full and
older events stored are erased. However, since the erased events are too old, they do
not affect the current processing, as the obtained time surfaces are the same as those
obtained by RAM-based HOTS networks. Therefore, a total memory of 9216 Kb is
enough to run this network without losing precision. Fig. 5.18 shows the memory
needed to implement this network for an ATIS and Davis 240C sensor with 32 bits
for timestamps and their corresponding bits for event addresses and polarities.

Regarding the memory used by each sensor, the parallel memory presented in
this chapter reduces the memory used to store the whole spatial resolution of DAVIS
240C and ATIS sensors to 50% and 72%, respectively, using 64 bits, which is above
the requirement for these sensors.
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FIGURE 5.18: Total memory consumption of parallel memory with
memory consumed by RAM memory for DAVIS 240c and ATIS

sensors.

5.4 Summary and Discussion

This chapter presents a novel architecture to infer the HOTS algorithm. Although
the system is able to compute a single-layer HOTS network in real time without
significant accuracy loss, it cannot infer a multi-layer network. One possible solution
would be to implement several processing units in the FPGA, in order to use more
prototypes to compare, and thus more patterns. Additionally, this would require a
router mechanism as the one seen in chapter 4 for convolution processors to route
events from one layer to other. However, a multi-layer implementation would imply
more hardware resources and memory accesses, due there are more prototypes to
store in memory.

This chapter also presents a novel memory model to store the most recent
events, with the aim of reducing latency and memory consumption. The
development of this model arises, due to the memory bottlenecks produced in
neuromorphic processing systems. The results of the memory model presented in
this chapter correspond to a theoretical study prior to synthesis, since it is currently
not possible to implement several memories of vast capacity in digital platforms
with the current technology. However, the tendency in neuromorphic engineering
is to develop new memory models such as the one presented in this chapter, in
order to increase the high input throughput of new neuromorphic vision sensors,
which have a vast input throughput, such as the one developed by Samsung (Son
et al., 2017), which improves the performance of DVS (Lichtsteiner, Posch, and
Delbrück, 2008) with a spatial resolution of 640x480 and an input throughput of 300
Mevps, which is difficult to process in real time

TABLE 5.5: Zynq-7100 MMP FPGA (xc7z100-2) resources of each
memory model for a 128 position and 64 bit width.

Cycle-per-Cycle Parallel read RAM memory
LUT 9% 23% 1%

LUTRAM/BRAM 2%/1% 4%/- 10%/1%
FF 1% 3% 1%

Memory accesses 128 2 25
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Table 5.5 shows the memory resources needed for each type of memory with 128
positions and 64-bit width. The main problem of the memory model developed
in comparison with RAM-based memories is that LUT resources are too high to
implement a single memory, as can be seen in the cycle-by-cycle and parallel read
versions, which require 9% and 23% of LUT, respectively, for a large FPGA platform
such as Zynq-7100 MMP.

Memristors, have been demonstrated to be a good technology approach to
parallel processing systems (Haron et al., 2016). This makes them ideal for
neuromorphic systems spike grids, where neurons have to communicate with their
neighbors in parallel (Y. Kim and Li, 2014). This kind of technology could allow
implementing the presented memory model in the future, using fewer resources
and reducing the memory bottlenecks, thus increasing the latency, as demonstrated
in this chapter.
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Chapter 6

Conclusions and Future works

“Imagination means nothing without
doing.”

Charlie Chaplin

This chapter presents the conclusions of the thesis, its main contributions and
future works. Before introducing the conclusions, it is important to highlight the
main differences between the two processing paradigms studied in this thesis to
assess the implementations of the convolution accelerators.

In Farabet et al., 2012 compared the two processing paradigms for frame-based
and event-based convolutions; however, this comparison can be applied to other
event-based systems, such as HOTS.

Event-driven processing makes use of sparse information of neuromorphic
vision sensors, starting the processing with the arrival of the first event, thus
event-based processing is pseudo-simultaneous. On the other hand, frame-based
processing requires all the pixels of the frame to start the computation.
Furthermore, regarding the speed of both systems, frame-based systems latency
depends directly on the speed of hardware resources, regardless of the input
stimulus. However, event-based processing speed depends on the number of
events received at the input.

Table 6.1 summarizes the main differences between the hardware systems
developed in this thesis.

TABLE 6.1: Event-driven vs frame-driven. Table taken from (Farabet
et al., 2012).

Event-based Frame-based

Data processing Per-event, resulting in pseudo-simultaneity Per frame/patch

Hardware multiplexing Not possible Possible

Hardware up-scaling By adding modules Ad hoc

Speed Determined by statistics of input stimuli
Determined by the number of operations, type of operations,

available hardware resources and their speed

Power consumption

Determined by module power per-event

and

inter-module communication power per-event

Determined by the power of the processor(s)

and

memory fetching requirements

Feedback Instantaneous. No need to iterate Need to iterate until convergence for each frame
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6.1 Conclusions

This section highlights the conclusions extracted from the work presented
throughout this document:

• A study of the human visual system and the most relevant neuromorphic
vision sensors were carried out.

• Study and comprehension of biological neurons properties and characteristics,
through an analysis of spike-encoded information.

• Deep learning algorithms were studied in depth, particularly convolutional
neural networks, to extract features from input images. This algorithm was
studied to be applied in frame-based images.

• Convolutional neural network accelerators for real-time processing were
developed for a co-design platform (FPGA + host computer) using OpenCL.
The FPGA accelerator was tested with a Lenet-5 network, which classifies the
MNIST dataset.

• A SoC-FPGA convolutional neural network accelerator called NullHop was
developed as part of the NPP project. NullHop’s main property is that it is
able to avoid null pixels computation, reducing the latency and power
consumption. A convolutional neural network called Roshambo was trained
and deployed on NullHop, in order to test the performance of the
architecture.

• An in-depth study of the theory behind spiking convolutional neural networks
and the most relevant hardware implementations.

• A software tool to convert images from frame-based to event-based algorithm
was developed. The tool applies three well-known methods, called Scan,
Random, and Bitwise, to convert pixels into a stream of events to be used in
event-based processing systems.

• An FPGA spiking convolution processor to infer spiking convolutional neural
networks was designed and implemented. This architecture implements
several spike convolutions based on leaky integrate-and-fire neurons, firing
events with negative or positive polarity. However, the number of spiking
events at the output is too high to infer a spiking convolutional neural
network, since the only implemented mechanism to stabilize the firing rate is
the leakage of the neurons.

• A new version of the spiking convolution processor was developed. In this
new version, negative values of membrane potential are not considered for
firing events. On the other hand, the convolution processor implements the
refractory period property to control the output firing rate. In addition, it
also has a new mask mechanism to implement the computation efficiently.
Finally, new upgrades were developed for both convolution processor versions
to implement several convolution layers using a single chip.

• During a three-month research internship in the Neuromorphic Vision and
Natural Computation of the Institut de la Vision, which is headed by Ryad
Benosman, a new pattern recognition algorithm for event-based images, called
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HOTS, was studied. As a result of this study, a novel VLSI implementation
of HOTS algorithm was developed for real-time processing. The architecture
was tested to classify six gestures from a novel event-based dataset, called
NavGestures-sit; we believe this is the first implementation of HOTS algorithm
on a VLSI system.

• A new memory model for event-based processing systems was designed. The
main property of this memory is that only recent events are stored, similar to
a cache memory in computer systems. This memory was studied and tested
under simulation over a HOTS network, reducing considerably the memory
access; however, it requires a large amount of LUT resources. For a single
memory of 128 positions and 64-bit width, 23% of LUT resources are used in a
large FPGA platform, such as Zynq-7100 MMP FPGA.
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6.2 Future works

After the tests and results obtained from the Altera OpenCL accelerator, it can be
seen that there is a memory bottleneck produced by the different kernels accessing
the memory. There exist two possible improvements to reduce latency. The first one
consists in changing the kernel structure to allow kernels to store their data in local
memory, avoiding memory accesses to global memory. On the other hand, using
the pipes mechanism given by Altera OpenCL would allow the kernels to
communicate between them, creating pipeline stages without accessing the global
memory.

Regarding the spiking convolution processors, they were tested to convolve
event-based images with different event streams, although convolution processors
are able to process events in real time. As future works, the different trained
mechanisms for spiking convolutional neural networks will be studied, in order to
use the convolution processor V2 to infer these networks, as it can compute
multiple layers of a network. In addition, the development of a mechanism to
configure automatically the different parameters of LIF neurons will also be
developed.

FPGA HOTS implementation was tested with gesture recognition. Although the
accuracy obtained by the architecture does not differ significantly from the software
implementation, the architecture cannot infer a multi-layer HOTS network. In the
future, the architecture will contain several processing units within a routing
module to send pattern events through the layers.

Finally, the event-based memory model proposed in this work was analyzed
and studied under post-synthesis simulation for the VLSI and pre-synthesis
simulation of a multi-layer network, due to the limitation of logical resources of
current hardware platforms. In the future, the memory model will be implemented
in order to verify its behavior in an event-based processing hardware platform. In
addition, new technologies will be studied to implement this kind of memory,
using less logical resources.
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6.3 Articles

The main articles and scientific contribution are listed below:

• Journals

– Ricardo Tapiador Morales, Alejandro Linares Barranco, Angel Jiménez
Fernandez and Gabriel Jiménez Moreno, "Neuromorphic LIF
Row-by-Row Multiconvolution Processor for FPGA," in IEEE
Transactions on Biomedical Circuits and Systems, vol. 13, no. 1, pp.
159-169, Feb. 2019. doi: 10.1109/TBCAS.2018.2880012

– Alessandro Aimar , Hesham Mostafa, Enrico Calabrese, Antonio Ríos
Navarro, Ricardo Tapiador Morales, Iulia Alexandra Lungu et al.
"NullHop: A Flexible Convolutional Neural Network Accelerator Based
on Sparse Representations of Feature Maps" in IEEE Transactions on
Neural Networks and Learning Systems, vol. 30, no. 3, pp. 644-656,
March 2019.doi: 10.1109/TNNLS.2018.2852335

• Congress

– Ricardo Tapiador Morales, Antonio Ríos Navarro, Alejandro Linares
Barranco, Minkyu Kim, Deepak Kadetotad, and Jae-sun Seo,
"Comprehensive Evaluation of OpenCL-Based CNN Implementations
for FPGAs". International Work-Conference on Artificial Neural
Networks (IWANN), Cadiz, 2017, pp. 271–282.

– Ricardo Tapiador Morales, Antonio Ríos Navarro, Juan P. Dominguez
Morales, Daniel Gutierrez Galán et al., "Event-based Row-by-Row
Multi-convolution engine for Dynamic-Vision Feature Extraction on
FPGA". International Joint Conference on Neural Networks (IJCNN),
Rio de Janeiro, 2018, pp. 1-7.doi: 10.1109/IJCNN.2018.8489449

– Ricardo Tapiador Morales, Antonio Ríos-Navarro, Juan P. Dominguez
Morales, Daniel Gutierrez Galán, Alejandro Linares Barranco. "Spiking
row-by-row FPGA Multi-kernel and Multi-layer Convolution Processor".
International Conference on Field-Programmable Logic and Applications
(FPL), Barcelona, 2019.

– Ricardo Tapiador Morales, Juan P. Dominguez Morales, Daniel Gutierrez
Galán, Antonio Ríos Navarro, Angel Jimenez Fernandez, Alejandro
Linares Barranco ."Live Demonstration: Neuromorphic Row-by-Row
Multi-Convolution FPGA Processor-SpiNNaker Architecture for
Dynamic-Vision Feature Extraction". IEEE International Symposium on
Circuits and Systems (ISCAS), Sapporo, 2019.
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