4,895 research outputs found

    Possible Reentrance of the Fractional Quantum Hall Effect in the Lowest Landau Level

    Get PDF
    In the framework of a recently developed model of interacting composite fermions, we calculate the energy of different solid and Laughlin-type liquid phases of spin-polarized composite fermions. The liquid phases have a lower energy than the competing solids around the electronic filling factors nu=4/11,6/17, and 4/19 and may thus be responsible for the fractional quantum Hall effect at nu=4/11. The alternation between solid and liquid phases when varying the magnetic field may lead to reentrance phenomena in analogy with the observed reentrant integral quantum Hall effect.Comment: 4 pages, 3 figures; revised version accepted for publication in Phys. Rev. Let

    Second Generation of Composite Fermions and the Self-Similarity of the Fractional Quantum Hall Effect

    Get PDF
    A recently developed model of interacting composite fermions, is used to investigate different composite-fermion phases. Their interaction potential allows for the formation of both solid and new quantum-liquid phases, which are interpreted in terms of second-generation composite fermions and which may be responsible for the fractional quantum Hall states observed at unusual filling factors, such as nu=4/11. Projection of the composite-fermion dynamics to a single level, involved in the derivation of the Hamiltonian of interacting composite fermions, reveals the underlying self-similarity of the model.Comment: 4 pages, 1 figure; to appear in "Proceedings of the 16th International Conference on High Magnetic Fields in Semiconductor Physics (SemiMag-16)", only change with respect to v1: correction in authors line, no changes in manuscrip

    Quantum Phases in Partially Filled Landau Levels

    Get PDF
    We compare the energies of different electron solids, such as bubble crystals with triangular and square symmetry and stripe phases, to those of correlated quantum liquids in partially filled intermediate Landau levels. Multiple transitions between these phases when varying the filling of the top-most partially filled Landau level explain the observed reentrance of the integer quantum Hall effect. The phase transitions are identified as first-order. This leads to a variety of measurable phenomena such as the phase coexistence between a Wigner crystal and a two-electron bubble phase in a Landau-level filling-factor range 4.15<nu<4.264.15 < nu < 4.26, which has recently been observed in transport measurements under micro-wave irradiation.Comment: 6 pages, 2 figures; to appear in "Proceedings of the 16th International Conference on High Magnetic Fields in Semiconductor Physics (SemiMag-16)

    Stress-wave analysis technique study on thick-walled type A302B steel pressure vessels, July 1968 - July 1969

    Get PDF
    Stress wave analysis and crack opening displacement to monitor subcritical crack growth for grade B alloy steel pressure vessel

    Tuning edge state localization in graphene nanoribbons by in-plane bending

    Full text link
    The electronic properties of graphene are influenced by both geometric confinement and strain. We study the electronic structure of in-plane bent graphene nanoribbons, systems where confinement and strain are combined. To understand its electronic properties, we develop a tight-binding model that has a small computational cost and is based on exponentially decaying hopping and overlap parameters. Using this model, we show that the edge states in zigzag graphene nanoribbons are sensitive to bending and develop an effective dispersion that can be described by a one-dimensional atomic chain model. Because the velocity of the electrons at the edge is proportional to the slope of the dispersion, the edge states become gradually delocalized upon increasing the strength of bending.Comment: 11 pages, 8 figure

    Creep of current-driven domain-wall lines: intrinsic versus extrinsic pinning

    Full text link
    We present a model for current-driven motion of a magnetic domain-wall line, in which the dynamics of the domain wall is equivalent to that of an overdamped vortex line in an anisotropic pinning potential. This potential has both extrinsic contributions due to, e.g., sample inhomogeneities, and an intrinsic contribution due to magnetic anisotropy. We obtain results for the domain-wall velocity as a function of current for various regimes of pinning. In particular, we find that the exponent characterizing the creep regime depends strongly on the presence of a dissipative spin transfer torque. We discuss our results in the light of recent experiments on current-driven domain-wall creep in ferromagnetic semiconductors, and suggest further experiments to corroborate our model.Comment: For figure in GIF format, see http://www.phys.uu.nl/~duine/mapping.gif v2: (hopefully) visible EPS figure added. v2: expanded new versio

    Staircase to Higher-Order Topological Phase Transitions

    Get PDF
    We find a series of topological phase transitions of increasing order, beyond the more standard second-order phase transition in a one-dimensional topological superconductor. The jumps in the order of the transitions depend on the range of the pairing interaction, which is parametrized by an algebraic decay with exponent α\alpha. Remarkably, in the limit α=1\alpha = 1 the order of the topological transition becomes infinite. We compute the critical exponents for the series of higher-order transitions in exact form and find that they fulfill the hyperscaling relation. We also study the critical behaviour at the boundary of the system and discuss potential experimental platforms of magnetic atoms in superconductors.Comment: 5+5pages, 7 figures. Accepted as a Rapid Communicatio

    Low-field microwave absorption and magnetoresistance in iron nanostructures grown by electrodeposition on n-type lightly-doped silicon substrates

    Full text link
    In this study we investigate magnetic properties, surface morphology and crystal structure in iron nanoclusters electrodeposited on lightly-doped (100) n-type silicon substrates. Our goal is to investigate the spin injection and detection in the Fe/Si lateral structures. The samples obtained under electric percolation were characterized by magnetoresistive and magnetic resonance measurements with cycling the sweeping applied field in order to understand the spin dynamics in the as-produced samples. The observed hysteresis in the magnetic resonance spectra, plus the presence of a broad peak in the non-saturated regime confirming the low field microwave absorption (LFMA), were correlated to the peaks and slopes found in the magnetoresistance curves. The results suggest long range spin injection and detection in low resistive silicon and the magnetic resonance technique is herein introduced as a promising tool for analysis of electric contactless magnetoresistive samples.Comment: 12 pages, 5 figure

    On the self-similarity in quantum Hall systems

    Full text link
    The Hall-resistance curve of a two-dimensional electron system in the presence of a strong perpendicular magnetic field is an example of self-similarity. It reveals plateaus at low temperatures and has a fractal structure. We show that this fractal structure emerges naturally in the Hamiltonian formulation of composite fermions. After a set of transformations on the electronic model, we show that the model, which describes interacting composite fermions in a partially filled energy level, is self-similar. This mathematical property allows for the construction of a basis of higher generations of composite fermions. The collective-excitation dispersion of the recently observed 4/11 fractional-quantum-Hall state is discussed within the present formalism.Comment: 7 pages, 4 figures; version accepted for publication in Europhys. Lett., new version contains energy calculations for collective excitations of the 4/11 stat
    corecore