19 research outputs found
Nuclear receptors in vascular biology
Nuclear receptors sense a wide range of steroids and hormones (estrogens, progesterone, androgens, glucocorticoid, and mineralocorticoid), vitamins (A and D), lipid metabolites, carbohydrates, and xenobiotics. In response to these diverse but critically important mediators, nuclear receptors regulate the homeostatic control of lipids, carbohydrate, cholesterol, and xenobiotic drug metabolism, inflammation, cell differentiation and development, including vascular development. The nuclear receptor family is one of the most important groups of signaling molecules in the body and as such represent some of the most important established and emerging clinical and therapeutic targets. This review will highlight some of the recent trends in nuclear receptor biology related to vascular biology
Pathogenic Mouse Hepatitis Virus or Poly(I:C) Induce IL-33 in Hepatocytes in Murine Models of Hepatitis.
International audienceThe IL-33/ST2 axis is known to be involved in liver pathologies. Although, the IL-33 levels increased in sera of viral hepatitis patients in human, the cellular sources of IL-33 in viral hepatitis remained obscure. Therefore, we aimed to investigate the expression of IL-33 in murine fulminant hepatitis induced by a Toll like receptor (TLR3) viral mimetic, poly(I:C) or by pathogenic mouse hepatitis virus (L2-MHV3). The administration of poly(I:C) plus D-galactosamine (D-GalN) in mice led to acute liver injury associated with the induction of IL-33 expression in liver sinusoidal endothelial cells (LSEC) and vascular endothelial cells (VEC), while the administration of poly(I:C) alone led to hepatocyte specific IL-33 expression in addition to vascular IL-33 expression. The hepatocyte-specific IL-33 expression was down-regulated in NK-depleted poly(I:C) treated mice suggesting a partial regulation of IL-33 by NK cells. The CD1d KO (NKT deficient) mice showed hepatoprotection against poly(I:C)-induced hepatitis in association with increased number of IL-33 expressing hepatocytes in CD1d KO mice than WT controls. These results suggest that hepatocyte-specific IL-33 expression in poly(I:C) induced liver injury was partially dependent of NK cells and with limited role of NKT cells. In parallel, the L2-MHV3 infection in mice induced fulminant hepatitis associated with up-regulated IL-33 expression as well as pro-inflammatory cytokine microenvironment in liver. The LSEC and VEC expressed inducible expression of IL-33 following L2-MHV3 infection but the hepatocyte-specific IL-33 expression was only evident between 24 to 32h of post infection. In conclusion, the alarmin cytokine IL-33 was over-expressed during fulminant hepatitis in mice with LSEC, VEC and hepatocytes as potential sources of IL-33
Recommended from our members
Non-genomic effects of the Pregnane X Receptor negatively regulate platelet functions, thrombosis and haemostasis
The pregnane X receptor (PXR) is a nuclear receptor (NR), involved in the detoxification of xenobiotic compounds. Recently, its presence was reported in the human vasculature and its ligands were proposed to exhibit anti-atherosclerotic effects. Since platelets contribute towards the development of atherosclerosis and possess numerous NRs, we investigated the expression of PXR in platelets along with the ability of its ligands to modulate platelet activation. The expression of PXR in human platelets was confirmed using immunoprecipitation analysis. Treatment with PXR ligands was found to inhibit platelet functions stimulated by a range of agonists, with platelet aggregation, granule secretion, adhesion and spreading on fibrinogen all attenuated along with a reduction in thrombus formation (both in vitro and in vivo). The effects of PXR ligands were observed in a species-specific manner, and the human-specific ligand, SR12813, was observed to attenuate thrombus formation in vivo in humanised PXR transgenic mice. PXR ligand-mediated inhibition of platelet function was found to be associated with the inhibition of Src-family kinases (SFKs). This study identifies acute, non-genomic regulatory effects of PXR ligands on platelet function and thrombus formation. In combination with the emerging anti-atherosclerotic properties of PXR ligands, these anti-thrombotic effects may provide additional cardio-protective benefits
Mutations in the UQCC1-Interacting Protein, UQCC2, Cause Human Complex III Deficiency Associated with Perturbed Cytochrome b Protein Expression
Contains fulltext :
125692.pdf (publisher's version ) (Open Access)Mitochondrial oxidative phosphorylation (OXPHOS) is responsible for generating the majority of cellular ATP. Complex III (ubiquinol-cytochrome c oxidoreductase) is the third of five OXPHOS complexes. Complex III assembly relies on the coordinated expression of the mitochondrial and nuclear genomes, with 10 subunits encoded by nuclear DNA and one by mitochondrial DNA (mtDNA). Complex III deficiency is a debilitating and often fatal disorder that can arise from mutations in complex III subunit genes or one of three known complex III assembly factors. The molecular cause for complex III deficiency in about half of cases, however, is unknown and there are likely many complex III assembly factors yet to be identified. Here, we used Massively Parallel Sequencing to identify a homozygous splicing mutation in the gene encoding Ubiquinol-Cytochrome c Reductase Complex Assembly Factor 2 (UQCC2) in a consanguineous Lebanese patient displaying complex III deficiency, severe intrauterine growth retardation, neonatal lactic acidosis and renal tubular dysfunction. We prove causality of the mutation via lentiviral correction studies in patient fibroblasts. Sequence-profile based orthology prediction shows UQCC2 is an ortholog of the Saccharomyces cerevisiae complex III assembly factor, Cbp6p, although its sequence has diverged substantially. Co-purification studies show that UQCC2 interacts with UQCC1, the predicted ortholog of the Cbp6p binding partner, Cbp3p. Fibroblasts from the patient with UQCC2 mutations have deficiency of UQCC1, while UQCC1-depleted cells have reduced levels of UQCC2 and complex III. We show that UQCC1 binds the newly synthesized mtDNA-encoded cytochrome b subunit of complex III and that UQCC2 patient fibroblasts have specific defects in the synthesis or stability of cytochrome b. This work reveals a new cause for complex III deficiency that can assist future patient diagnosis, and provides insight into human complex III assembly by establishing that UQCC1 and UQCC2 are complex III assembly factors participating in cytochrome b biogenesis
Lung cancer in Brazil
Lung cancer is one of the most incident types of cancer and a leading cause of cancer mortality in Brazil. We reviewed the current status of lung cancer by searching relevant data on prevention, diagnosis, and treatment in the country. This review highlights several issues that need to be addressed, including smoking control, patient lack of awareness, late diagnosis, and disparities in the access to cancer health care facilities in Brazil. We propose strategies to help overcome these limitations and challenge health care providers, as well as the society and governmental representatives, to work together and to take a step forward in fighting lung cancer