13 research outputs found

    MYH10 protein expression in platelets as a biomarker of RUNX1 and FLI1 alterations

    No full text
    International audienceAbstract RUNX1 gene alterations are associated with acquired and inherited hematologic malignancies that include familial platelet disorder/acute myeloid leukemia, primary or secondary acute myeloid leukemia, and chronic myelomonocytic leukemia. Recently, we reported that RUNX1-mediated silencing of nonmuscle myosin heavy chain IIB (MYH10) was required for megakaryocyte ploidization and maturation. Here we demonstrate that runx1 deletion in mice induces the persistence of MYH10 in platelets, and a similar persistence was observed in platelets of patients with constitutional (familial platelet disorder/acute myeloid leukemia) or acquired (chronic myelomonocytic leukemia) RUNX1 mutations. MYH10 was also detected in platelets of patients with the Paris-Trousseau syndrome, a thrombocytopenia related to the deletion of the transcription factor FLI1 that forms a complex with RUNX1 to regulate megakaryopoiesis, whereas MYH10 persistence was not observed in other inherited forms of thrombocytopenia. We propose MYH10 detection as a new and simple tool to identify inherited platelet disorders and myeloid neoplasms with abnormalities in RUNX1 and its associated proteins

    Clonal architecture of chronic myelomonocytic leukemias.

    No full text
    International audienceGenomic studies in chronic myeloid malignancies, including myeloproliferative neoplasms (MPN), myelodysplastic syndromes (MDS), and MPN/MDS, have identified common mutations in genes encoding signaling, epigenetic, transcription, and splicing factors. In the present study, we interrogated the clonal architecture by mutation-specific discrimination analysis of single-cell-derived colonies in 28 patients with chronic myelomonocytic leukemias (CMML), the most frequent MPN/MDS. This analysis reveals a linear acquisition of the studied mutations with limited branching through loss of heterozygosity. Serial analysis of untreated and treated samples demonstrates a dynamic architecture on which most current therapeutic approaches have limited effects. The main disease characteristics are early clonal dominance, arising at the CD34(+)/CD38(-) stage of hematopoiesis, and granulomonocytic differentiation skewing of multipotent and common myeloid progenitors. Comparison of clonal expansions of TET2 mutations in MDS, MPN, and CMML, together with functional invalidation of TET2 in sorted progenitors, suggests a causative link between early clonal dominance and skewed granulomonocytic differentiation. Altogether, early clonal dominance may distinguish CMML from other chronic myeloid neoplasms with similar gene mutations

    Prognostic score including gene mutations in chronic myelomonocytic leukemia

    No full text
    PURPOSESeveral prognostic scoring systems have been proposed for chronic myelomonocytic leukemia (CMML), a disease in which some gene mutations-including ASXL1-have been associated with poor prognosis in univariable analyses. We developed and validated a prognostic score for overall survival (OS) based on mutational status and standard clinical variables. PATIENTS AND METHODSWe genotyped ASXL1 and up to 18 other genes including epigenetic (TET2, EZH2, IDH1, IDH2, DNMT3A), splicing (SF3B1, SRSF2, ZRSF2, U2AF1), transcription (RUNX1, NPM1, TP53), and signaling (NRAS, KRAS, CBL, JAK2, FLT3) regulators in 312 patients with CMML. Genotypes and clinical variables were included in a multivariable Cox model of OS validated by bootstrapping. A scoring system was developed using regression coefficients from this model.ResultsASXL1 mutations (P < .0001) and, to a lesser extent, SRSF2 (P = .03), CBL (P = .003), and IDH2 (P = .03) mutations predicted inferior OS in univariable analysis. The retained independent prognostic factors included ASXL1 mutations, age older than 65 years, WBC count greater than 15 ×109/L, platelet count less than 100 ×109/L, and anemia (hemoglobin < 10 g/dL in female patients, < 11g/dL in male patients). The resulting five-parameter prognostic score delineated three groups of patients with median OS not reached, 38.5 months, and 14.4 months, respectively (P < .0001), and was validated in an independent cohort of 165 patients (P < .0001). CONCLUSIONA new prognostic score including ASXL1 status, age, hemoglobin, WBC, and platelet counts defines three groups of CMML patients with distinct outcomes. Based on concordance analysis, this score appears more discriminative than those based solely on clinical parameters

    Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents

    Get PDF
    International audienceThe cytidine analogues azacytidine and 5-aza-2'-deoxycytidine (decitabine) are commonly used to treat myelodysplastic syndromes, with or without a myeloproliferative component. It remains unclear whether the response to these hypomethylating agents results from a cytotoxic or an epigenetic effect. In this study, we address this question in chronic myelomonocytic leukaemia. We describe a comprehensive analysis of the mutational landscape of these tumours, combining whole-exome and whole-genome sequencing. We identify an average of 14±5 somatic mutations in coding sequences of sorted monocyte DNA and the signatures of three mutational processes. Serial sequencing demonstrates that the response to hypomethylating agents is associated with changes in DNA methylation and gene expression, without any decrease in the mutation allele burden, nor prevention of new genetic alteration occurence. Our findings indicate that cytosine analogues restore a balanced haematopoiesis without decreasing the size of the mutated clone, arguing for a predominantly epigenetic effect
    corecore