5,584 research outputs found
A multiscale data-driven approach for bone tissue biomechanics
The data-driven methodology with application to continuum mechanics relies upon two main pillars: (i) experimental characterization of stress–strain pairs associated to different loading states, and (ii) numerical elaboration of the elasticity equations as an optimization (searching) algorithm using compatibility and equilibrium as constraints. The purpose of this work is to implement a multiscale data-driven approach using experimental data of cortical bone tissue at different scales. First, horse cortical bone samples are biaxially loaded and the strain fields are recorded over a region of interest using a digital image correlation technique. As a result, both microscopic strain fields and macroscopic strain states are obtained by a homogenization procedure, associated to macroscopic stress loading states which are considered uniform along the sample. This experimental outcome is here referred as a multiscale dataset. Second, the proposed multiscale data-driven methodology is implemented and analyzed in an example of application. Results are presented both in the macroscopic and microscopic scales, with the latter considered just as a post-process step in the formulation. The macroscopic results show non-smooth strain and stress patterns as a consequence of the tissue heterogeneity which suggest that a preassumed linear homogeneous orthotropic model may be inaccurate for bone tissue. Microscopic results show fluctuating strain fields – as a consequence of the interaction and evolution of the microconstituents – an order of magnitude higher than the averaged macroscopic solution, which evidences the need of a multiscale approach for the mechanical analysis of cortical bone, since the driving force of many biological bone processes is local at the microstructural level. Finally, the proposed multiscale data-driven technique may also be an adequate strategy for the solution of intractable large size multiscale FE2 computational approaches since the solution at the microscale is obtained as a postprocessing. As a main conclusion, the proposed multiscale data-driven methodology is a useful alternative to overcome limitations in the continuum mechanical study of the bone tissue. This methodology may also be considered as a useful strategy for the analysis of additional biological or technological hierarchical multiscale materials
Gamma Ray Bursts: Observations and Theoretical Conjectures
Gamma Ray Bursts (GRBs) are short bursts of very high energy photons which were discovered in the late 1960s. Ever since their discovery, scientists have wondered about their origin. Nowadays it is known that they originate outside the Milky Way because of their high red shift rst measured in the afterglows thanks to the Beppo-SAX satellite and ground-based observations. However, theoreticians still do not agree about the mechanism that generates the bursts, and different competing models are animatedly debated. Current GRB experiments include the Swift satellite and the Pierre Auger Observatory that could detect GRBs with an increase of the background. A forthcoming dedicated experiment is GLAST, a satellite observatory for detecting gamma rays with energies up to 300 GeV, whose launch is scheduled for early 2008
Localization of bulk matter fields, the hierarchy problem and corrections to Coulomb's law on a pure de Sitter thick braneworld
In this paper we investigate the localization and mass spectra of matter
fields with spin 0, 1 and 1/2 on a geometric thick brane generated by pure 4D
and 5D positive cosmological constants without bulk scalar fields. This model
possesses a 4D cosmological constant that can be made as small as one desires
without fine-tuning it with the bulk cosmological constant. The RS model is
obtained as an analytic continuation of the flat brane limit of this braneworld
configuration when the Hubble parameter disappears. Within this inflating
braneworld model it is possible to formulate a mechanism for obtaining TeV mass
scales from Planck ones by adding a positive thin brane, where the Standard
Model fields are trapped, at a distance y_2 from the origin, where the Planck
thick brane resides. The brane separation must be of the same order than the
inverse thickness parameter of the model in order for the mechanism to generate
the desired hierarchy. This result is obtained by imposing the recovery of both
the correct 4D gravitational couplings and the actually observed accelerated
expansion of the universe in our de Sitter braneworld. Regarding the
localization of matter in the purely geometric thick braneworld, for spin 0
massless and massive scalar fields as well as for spin 1 vector fields, the
potentials of the Kaluza--Klein (KK) modes in thecorresponding Schroedinger
equations are modified Poeschl-Teller potentials, which lead to the
localization of the scalar and vector zero modes on the brane as well as to
mass gaps in the mass spectra. We also compute the corrections to Coulomb's law
coming from massive KK vector modes. For spin 1/2 fermions, we introduce the
bulk mass term MF(z)\bar{\Psi}\Psi in the action and show that localization of
the massless left-chiral fermion zero mode is feasible for two mass functions
MF(z) with a finite/infinite number of massive KK bound states.Comment: 28 pages in latex, 19 figures, title modified according to
substantial additions performed in the text of the manuscript. To appear in
Phys Rev
Characteristics of the Shiga-toxin-producing enteroaggregative Escherichia coli O104:H4 German outbreak strain and of STEC strains isolated in Spain
A Shiga-toxin-producing Escherichia coli (STEC) strain belonging to serotype O104:H4, phylogenetic group B1 and sequence type ST678, with virulence features common to the enteroaggregative E. coli (EAEC) pathotype, was reported as the cause of the recent 2011 outbreak in Germany. The outbreak strain was determined to carry several virulence factors of extraintestinal pathogenic E. coli (ExPEC) and to be resistant to a wide range of antibiotics. There are only a few reports of serotype O104:H4, which is very rare in humans and has never been detected in animals or food. Several research groups obtained the complete genome sequence of isolates of the German outbreak strain as well as the genome sequences of EAEC of serotype O104:H4 strains from Africa. Those findings suggested that horizontal genetic transfer allowed the emergence of the highly virulent Shiga-toxin-producing enteroaggregative E. coli (STEAEC) O104:H4 strain responsible for theoutbreak in Germany. Epidemiologic investigations supported a linkage between the outbreaks in Germany and France and traced their origin to fenugreek seeds imported from Africa. However, there has been no isolation of the causative strain O104:H4 from any of the samples of fenugreek seeds analyzed. Following the German outbreak, we conducted a large sampling to analyze the presence of STEC, EAEC, and other types of diarrheagenic E. coli strains in Spanish vegetables. During June and July 2011, 200 vegetable samples from different origins were analyzed. All were negative for the virulent serotype O104:H4 and only one lettuce sample (0.6%) was positive for a STEC strain of serotype O146:H21 (stx1, stx2), considered of low virulence. Despite the single positive case, the hygienic and sanitary quality of Spanish vegetables proved to be quite good. In 195 of the 200 samples (98%), <10 colony-forming units (cfu) of E. coli per gram were detected, and the microbiological levels of all samples were satisfactory (<100 cfu/g). The samples were also negative for other pathotypes of diarrheagenic E. coli (EAEC, ETEC, tEPEC, and EIEC). Consistent with data from other countries, STEC belonging to serotypeO157:H7 and other serotypes have been isolated from beef, milk, cheese, and domestic (cattle, sheep, goats) and wild (deer, boar, fox) animals in Spain. Nevertheless, STEC outbreaks in Spain are rare
Adipokines and Inflammation: Focus on Cardiovascular Diseases
It is well established that adipose tissue, apart from its energy storage function, acts as an endocrine organ that produces and secretes a number of bioactive substances, including hormones commonly known as adipokines. Obesity is a major risk factor for the development of cardiovascular diseases, mainly due to a low grade of inflammation and the excessive fat accumulation produced in this state. The adipose tissue dysfunction in obesity leads to an aberrant release of adipokines, some of them with direct cardiovascular and inflammatory regulatory functions. Inflammation is a common link between obesity and cardiovascular diseases, so this review will summarise the role of the main adipokines implicated in the regulation of the inflammatory processes occurring under the scenario of cardiovascular diseases
Radon and material radiopurity assessment for the NEXT double beta decay experiment
The Neutrino Experiment with a Xenon TPC (NEXT), intended to investigate the
neutrinoless double beta decay using a high-pressure xenon gas TPC filled with
Xe enriched in 136Xe at the Canfranc Underground Laboratory in Spain, requires
ultra-low background conditions demanding an exhaustive control of material
radiopurity and environmental radon levels. An extensive material screening
process is underway for several years based mainly on gamma-ray spectroscopy
using ultra-low background germanium detectors in Canfranc but also on mass
spectrometry techniques like GDMS and ICPMS. Components from shielding,
pressure vessel, electroluminescence and high voltage elements and energy and
tracking readout planes have been analyzed, helping in the final design of the
experiment and in the construction of the background model. The latest
measurements carried out will be presented and the implication on NEXT of their
results will be discussed. The commissioning of the NEW detector, as a first
step towards NEXT, has started in Canfranc; in-situ measurements of airborne
radon levels were taken there to optimize the system for radon mitigation and
will be shown too.Comment: Proceedings of the Low Radioactivity Techniques 2015 workshop
(LRT2015), Seattle, March 201
NEXT-100 Technical Design Report (TDR). Executive Summary
In this Technical Design Report (TDR) we describe the NEXT-100 detector that
will search for neutrinoless double beta decay (bbonu) in Xe-136 at the
Laboratorio Subterraneo de Canfranc (LSC), in Spain. The document formalizes
the design presented in our Conceptual Design Report (CDR): an
electroluminescence time projection chamber, with separate readout planes for
calorimetry and tracking, located, respectively, behind cathode and anode. The
detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or
100 kg at 10 bar. This option builds in the capability to increase the total
isotope mass by 50% while keeping the operating pressure at a manageable level.
The readout plane performing the energy measurement is composed of Hamamatsu
R11410-10 photomultipliers, specially designed for operation in low-background,
xenon-based detectors. Each individual PMT will be isolated from the gas by an
individual, pressure resistant enclosure and will be coupled to the sensitive
volume through a sapphire window. The tracking plane consists in an array of
Hamamatsu S10362-11-050P MPPCs used as tracking pixels. They will be arranged
in square boards holding 64 sensors (8 times8) with a 1-cm pitch. The inner
walls of the TPC, the sapphire windows and the boards holding the MPPCs will be
coated with tetraphenyl butadiene (TPB), a wavelength shifter, to improve the
light collection.Comment: 32 pages, 22 figures, 5 table
- …