16,111 research outputs found

    Giant Charge Relaxation Resistance in the Anderson Model

    Full text link
    We investigate the dynamical charge response of the Anderson model viewed as a quantum RC circuit. Applying a low-energy effective Fermi liquid theory, a generalized Korringa-Shiba formula is derived at zero temperature, and the charge relaxation resistance is expressed solely in terms of static susceptibilities which are accessible by Bethe ansatz. We identify a giant charge relaxation resistance at intermediate magnetic fields related to the destruction of the Kondo singlet. The scaling properties of this peak are computed analytically in the Kondo regime. We also show that the resistance peak fades away at the particle-hole symmetric point.Comment: 4 pages, 1 figur

    Searching for signatures of planet formation in stars with circumstellar debris discs

    Get PDF
    (Abridged) Tentative correlations between the presence of dusty debris discs and low-mass planets have been presented. In parallel, detailed chemical abundance studies have reported different trends between samples of planet and non-planet hosts. We determine in a homogeneous way the metallicity, and abundances of a sample of 251 stars including stars with known debris discs, with debris discs and planets, and only with planets. Stars with debris discs and planets have the same [Fe/H] behaviour as stars hosting planets, and they also show a similar -Tc trend. Different behaviour in the -Tc trend is found between the samples of stars without planets and the samples of planet hosts. In particular, when considering only refractory elements, negative slopes are shown in cool giant planet hosts, whilst positive ones are shown in stars hosting low-mass planets. Stars hosting exclusively close-in giant planets show higher metallicities and positive -Tc slope. A search for correlations between the -Tc slopes and the stellar properties reveals a moderate but significant correlation with the stellar radius and as well as a weak correlation with the stellar age. The fact that stars with debris discs and stars with low-mass planets do not show neither metal enhancement nor a different -Tc trend might indicate a correlation between the presence of debris discs and the presence of low-mass planets. We extend results from previous works which reported differences in the -Tc trends between planet hosts and non hosts. However, these differences tend to be present only when the star hosts a cool distant planet and not in stars hosting exclusively low-mass planets.Comment: Accepted for publication in Astronomy and Astrophysic

    Superconducting transport through a vibrating molecule

    Full text link
    Nonequilibrium electronic transport through a molecular level weakly coupled to a single coherent phonon/vibration mode has been studied for superconducting leads. The Keldysh Green function formalism is used to compute the current for the entire bias voltage range. In the subgap regime, Multiple Andreev Reflection (MAR) processes accompanied by phonon emission cause rich structure near the onset of MAR channels, including an even-odd parity effect that can be interpreted in terms of an inelastic MAR ladder picture. Thereby we establish a connection between the Keldysh formalism and the Landauer scattering approach for inelastic MAR.Comment: 5 pages, 5 figures, version contains now more details, accepted by PR

    The low temperature Fulde-Ferrell-Larkin-Ovchinnikov phases in 3 dimensions

    Full text link
    We consider the nature of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases in three dimensions at low temperature. We introduce a new method to handle the quasiclassical equations for superconductors with space dependent order parameter, which makes use of a Fourier expansion. This allows us to show that, at T=0, an order parameter given by the linear combination of three cosines oscillating in orthogonal directions is preferred over the standard single cosine solution. The transition from the normal state to this phase is first order, and quite generally the transition below the tricritical point to the FFLO phases is always first order.Comment: 4 pages, revtex, 1 figur

    Confinement-induced resonances for a two-component ultracold atom gas in arbitrary quasi-one-dimensional traps

    Full text link
    We solve the two-particle s-wave scattering problem for ultracold atom gases confined in arbitrary quasi-one-dimensional trapping potentials, allowing for two different atom species. As a consequence, the center-of-mass and relative degrees of freedom do not factorize. We derive bound-state solutions and obtain the general scattering solution, which exhibits several resonances in the 1D scattering length induced by the confinement. We apply our formalism to two experimentally relevant cases: (i) interspecies scattering in a two-species mixture, and (ii) the two-body problem for a single species in a non-parabolic trap.Comment: 22 pages, 3 figure

    Enabling science with Gaia observations of naked-eye stars

    Get PDF
    ESA's Gaia space astrometry mission is performing an all-sky survey of stellar objects. At the beginning of the nominal mission in July 2014, an operation scheme was adopted that enabled Gaia to routinely acquire observations of all stars brighter than the original limit of G~6, i.e. the naked-eye stars. Here, we describe the current status and extent of those observations and their on-ground processing. We present an overview of the data products generated for G<6 stars and the potential scientific applications. Finally, we discuss how the Gaia survey could be enhanced by further exploiting the techniques we developed.Comment: 16 pages, 8 figures. Submitted for the proceedings of the 2016 SPIE Astronomical Instrumentation and Telescopes conference (SPIE 9904

    Stochastic integration with respect to cylindrical semimartingales

    Get PDF
    In this work we introduce a theory of stochastic integration with respect to general cylindrical semimartingales defined on a locally convex space Φ\Phi. Our construction of the stochastic integral is based on the theory of tensor products of topological vector spaces and the property of good integrators of real-valued semimartingales. This theory is further developed in the case where Φ\Phi is a complete, barrelled, nuclear space, where we obtain a complete description of the class of integrands as Φ\Phi-valued locally bounded and weakly predictable processes. Several other properties of the stochastic integral are proven, including a Riemann representation, a stochastic integration by parts formula and a stochastic Fubini theorem. Our theory is then applied to provide sufficient and necessary conditions for existence and uniqueness of solutions to linear stochastic evolution equations driven by semimartingale noise taking values in the strong dual Φ′\Phi' of Φ\Phi. In the last part of this article we apply our theory to define stochastic integrals with respect to a sequence of real-valued semimartingales
    • …
    corecore