12 research outputs found

    Reverse electrochemical etching method for fabricating ultra-sharp platinum/iridium tips for combined scanning tunneling microscope/ atomic force microscope based on a quartz tuning fork

    Get PDF
    International audienceSharp Pt/Ir tips have been reproducibly etched by an electrochemical process using an inverse geometry of an electrochemical cell and a dedicated electronic device which allows us to control the applied voltages waveform and the intensity of the etching current. Conductive tips with a radius smaller than 10 nm were routinely produced as shown by field emission measurements through FowlereNordheim plots. These etched tips were then fixed on a quartz tuning fork force sensor working in a qPlus configuration to check their performances for both scanning tunneling microscopy (STM) and atomic force microscopy (AFM) imaging. Their sharpness and conductivity are evidenced by the resolution achieved in STM and AFM images obtained of epitaxial graphene on 6H-SiC(0001) surface. The structure of an epitaxial graphene layer thermally grown on the 6H-SiC(0001) (6R3x6R3)R30° reconstructed surface, was successfully imaged at room temperature with STM, dynamic STM and by frequency modulated AFM

    Tenacidad a la fractura de compuestos cermets 3Al2O3*2SiO2/Ag manufacturados por molienda de alta energía

    Get PDF
    La fabricación de materiales compuestos de matriz cerámica reforzados con partículas metálicas han propiciado la formación de nuevos materiales conocidos como compuestos CERMETS, materiales que debido a sus elementos precursores poseen propiedades distintas a las de los materiales convencionales. En este trabajo se establece la ruta de fabricación de materiales compuestos cermets base 3Al2O3*2SiO2 reforzados con partículas metálicas de Ag a partir de la formación de la composición química en peso de polvos de 3Al2O3*2SiO2 / 1% Ag en busca de un aumento en la tenacidad a la fractura con respecto al cerámico base. La composición química de polvos es sometida a un proceso de mezcla molienda de alta energía en seco en un molino tipo planetario por 2 horas a 200 rpm. Los polvos posteriormente son conformados en muestras cilíndricas de 20 mm de diámetro y 3 mm de espesor mediante la aplicación de carga uniaxial en frío de 200 MPa. Las muestras son sinterizadas a 1500°C y 1600°C por una y dos horas en un horno de resistencia eléctrica en atmósfera controlada de gas nitrógeno. Los compuestos fabricados son analizados microestructuralmente por microscopia óptica y electrónica de barrido. Se determina la densidad y las propiedades mecánicas de dureza y tenacidad a la fractura, las dos últimas por el método de indentación. Los resultados muestran la viabilidad de fabricación de materiales compuestos cermets así como los cambios en la densidad, la dureza y la tenacidad a la fractura, con respecto al cerámico 3Al2O3*2SiO2 sin refuerzo metálico

    Tip induced mechanical deformation of epitaxial graphene grown on reconstructed 6H–SiC(0001) surface during scanning tunneling and atomic force microscopy studies

    Get PDF
    International audienceTip induced mechanical deformation of epitaxial graphene grown on reconstructed 6H–SiC(0001) surface during scanning tunneling and atomic force microscopy studies Abstract The structural and mechanical properties of an epitaxial graphene (EG) monolayer thermally grown on top of a 6H–SiC(0001) surface were studied by combined dynamic scanning tunneling microscopy (STM) and frequency modulation atomic force microscopy (FM-AFM). Experimental STM, dynamic STM and AFM images of EG on 6H–SiC(0001) show a lattice with a 1.9 nm period corresponding to the (6 × 6) quasi-cell of the SiC surface. The corrugation amplitude of this (6 × 6) quasi-cell, measured from AFM topographies, increases with the setpoint value of the frequency shift Δf (15–20 Hz, repulsive interaction). Excitation variations map obtained simultaneously with the AFM topography shows that larger dissipation values are measured in between the topographical bumps of the (6 × 6) quasi-cell. These results demonstrate that the AFM tip deforms the graphene monolayer. During recording in dynamic STM mode, a frequency shift (Δf) map is obtained in which Δf values range from 41 to 47 Hz (repulsive interaction). As a result, we deduced that the STM tip, also, provokes local mechanical distortions of the graphene monolayer. The origin of these tip-induced distortions is discussed in terms of electronic and mechanical properties of EG on 6H–SiC(0001)

    Understanding the STM images of epitaxial graphene on a reconstructed 6H-SiC(0001) surface: the role of tip-induced mechanical distortion of graphene

    No full text
    International audienceEpitaxial graphene (EG) grown on an annealed 6H-SiC(0001) surface has been studied under ultra-high vacuum (UHV) conditions by using a combined dynamic-scanning tunneling microscope/frequency modulation-atomic force microscope (dynamic-STM/FM-AFM) platform based on a qPlus probe. STM and AFM images independently recorded present the same hexagonal lattice of bumps with a 1.9 nm lattice period, which agrees with density functional theory (DFT) calculations and experimental results previously reported, attributed to the (6 x 6) quasi-cell associated with the 6H-SiC(0001) (63\sqrt 3x63\sqrt 3) R30 reconstruction. However, topographic bumps in AFM images and maxima in the simultaneously recorded mean-tunneling-current map do not overlap but appear to be spaced typically by about 1 nm along the [11] direction of the (6 x 6) quasi-cell. A similar shift is observed between the position of maxima in dynamic-STM images and those in the simultaneously recorded frequency shift map. The origin of these shifts is discussed in terms of electronic coupling variations between the local density of states (LDOS) of EG and the LDOS of the buffer layer amplified by mechanical distortions of EG induced by the STM or AFM tip. Therefore, a constant current STM image of EG on a reconstructed 6H-SiC(0001) surface does not reproduce its real topography but corresponds to the measured LDOS modulations, which depend on the variable tip-induced graphene distortion within the (6 x 6) quasi-cell

    Fabrication de pointes de fibre de carbone ultra-fines pour les enquêtes de microscopie à effet tunnel du graphène épitaxié sur la surface de 6H-SiC(0001)

    No full text
    International audienceThe fabrication of ultra-sharp tips from carbon fiber (CF), which are mounted on a qPlus probe for combined dynamic scanning tunneling microscopy (STM) and frequency modulation atomic force microscopy (FM-AFM) experiments, is reported. The carbon fiber tips were electrochemically etched in a KOH or NaOH solution, using different electronic devices. CF tips with an apex radius ~10 nm, as deduced from the measured slopes of the Fowler–Nordheim plots (kR < 70 nm for k ~ 6), were routinely obtained with a home-made electronic device that controls the intensity of the etching current. Then, these conductive CF tips were also characterized by imaging the 6H-SiC(0001) surface covered by an epitaxial graphene layer in ultra-high vacuum (UHV). The lattice of the (6R3x6R3)R30° reconstruction was regularly imaged by STM working either in non-oscillating mode or in dynamic mode, which also maps the variations of the force gradient. From these measurements with a constant mean-tunneling-current of 20 pA, it was found that the STM tip suffered variations of the tip/surface force gradient in between 8.25 and 16.50 N/m when it scanned the epitaxial graphene layer on the reconstructed 6H-SiC(0001) surface

    BJS commission on surgery and perioperative care post-COVID-19

    No full text
    Background: Coronavirus disease 2019 (COVID-19) was declared a pandemic by the WHO on 11 March 2020 and global surgical practice was compromised. This Commission aimed to document and reflect on the changes seen in the surgical environment during the pandemic, by reviewing colleagues experiences and published evidence. Methods: In late 2020, BJS contacted colleagues across the global surgical community and asked them to describe how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had affected their practice. In addition to this, the Commission undertook a literature review on the impact of COVID-19 on surgery and perioperative care. A thematic analysis was performed to identify the issues most frequently encountered by the correspondents, as well as the solutions and ideas suggested to address them. Results: BJS received communications for this Commission from leading clinicians and academics across a variety of surgical specialties in every inhabited continent. The responses from all over the world provided insights into multiple facets of surgical practice from a governmental level to individual clinical practice and training. Conclusion: The COVID-19 pandemic has uncovered a variety of problems in healthcare systems, including negative impacts on surgical practice. Global surgical multidisciplinary teams are working collaboratively to address research questions about the future of surgery in the post-COVID-19 era. The COVID-19 pandemic is severely damaging surgical training. The establishment of a multidisciplinary ethics committee should be encouraged at all surgical oncology centres. Innovative leadership and collaboration is vital in the post-COVID-19 era

    Teotihuacan

    No full text
    corecore