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Sharp Pt/Ir tips have been reproducibly etched by an electrochemical process using an inverse geometry
of an electrochemical cell and a dedicated electronic device which allows us to control the applied
voltages waveform and the intensity of the etching current. Conductive tips with a radius smaller than
10 nm were routinely produced as shown by field emission measurements through Fowler—Nordheim
plots. These etched tips were then fixed on a quartz tuning fork force sensor working in a qPlus
configuration to check their performances for both scanning tunneling microscopy (STM) and atomic
force microscopy (AFM) imaging. Their sharpness and conductivity are evidenced by the resolution

K ds:

ngvgfcrhisng achieved in STM and AFM images obtained of epitaxial graphene on 6H—SiC(0001) surface. The structure
AFM of an epitaxial graphene layer thermally grown on the 6H—SiC(0001) (6v/3 x 6v/3) R30° reconstructed
STM surface, was successfully imaged at room temperature with STM, dynamic STM and by frequency

Fowler—Nordheim plot modulated AFM.

Epitaxial graphene

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recently, several high-resolution atomic force microscopy
(AFM) studies of surface structures were performed with self-
sensing piezoelectric scanning probes working in ultrahigh vac-
uum environment [1—4] or in liquid [5,6]. The probe often consists
of a sharp metallic tip attached to a quartz tuning fork. In the qPlus
configuration [1], one prong of the tuning fork is fixed while the tip
is fixed on the end of the oscillating free prong. With a spring
constant comprised between 1 and 10 kN/m, this stiff AFM probe
can also produce scanning tunneling microscopy (STM) images
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since a short distance of a few atomic diameters can be established
between the oscillating metallic tip and the surface. In that oscil-
lating tip STM mode, hereafter called dynamic STM, the Z distance
regulation is driven by the mean value of the tunneling current
circulating between the tip and the conductive surface while the
corresponding resonance frequency shift variations sensitive to the
surface force gradient can be recorded. Such a combined STM/AFM
system appears very attractive since different properties of the
surface can be simultaneously investigated. In this context, the tip
sharpness is the key for obtaining high resolution images.

The production of sharp metallic tips was first explored for field
emission electron microscopy (FEM) and field ion microscopy (FIM)
studies [7]. Considering the recipes used for FEM/FIM experiments,
Melmed [8] had reported a short review on the experimental
conditions for etching W and Pt/Ir wires for obtaining sharp tips.
Changes in the tip geometry were mainly related to the nature and
concentration of the etching solution together with the waveform
of applied voltage. The influence of the electrochemical cell ge-
ometry onto the tip shape was also studied. For example, the
double lamellae drop-off etching technique was used for making a
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sharp W tip from a wire attached to the prong of a tuning fork
[9,10]. Tips with a curvature radius of 50 nm were obtained.

Besides efforts to select the best geometry of the cell and
etchant solutions, the electric conditions were also adjusted for
obtaining sharpest tips. For example, AC polishing process has been
improved for Mo tips by controlling the applying voltage, the fre-
quency, the waveform and the bursts [11]. For W tips, Ibe et al. [12]
have evidenced that, in addition to the electrochemical conditions,
other parameters as the cut-off delays and the wire immersion
length modify the tip curvature radius. Shortening the cut-off delay
of the etching current after the material wire drops off at the air-
electrolyte interface was also found to be critical for the radius of
W tip apex [13]. Fotino had proposed an original design for the cell
called reverse electrochemical etching geometry [14]. In that
configuration a hook-shaped wire, partially covered by an insu-
lating layer except for the free end, allows the formation of a tip
from which the bubble flow moves away. In this reverse etching the
induced bubbles apply shear forces improving the tip sharpness. A
process for achieving a reproducible sharp tip apex was identified
from a systematic study of the electropolishing process of W tips
[15].

However, the well-known presence of an oxide layer covering
the Pt/Ir [16—18] and W [19—26] tips requires a cleaning treatment
to obtain optimal tunneling current flow. W tips fabricated by
electrochemical etching, cleaned by heating and characterized by
Fowler—Nordheim (FN) plot and FIM were reported to display a
clean apex with 3—15 nm radius of curvature [24,25]. Recently, the
apex radii of tungsten based microemitter tips, ranging from 25 to
500 nm, were measured from SEM images and extracting from FN
plots of the field emission characteristics [27].

On the other hand, the fabrication of Pt/Ir tips was less inten-
sively studied than the W ones, although it is established that
platinum based tips are chemically inert and less prone to the oxide
layer problem than tungsten. However, platinum-based tips require
more complicated fabrication protocols than the W ones. For
example, two stages of electrochemical etching with two different
solutions were need to obtain reasonable sharpness for high reso-
lution STM imaging as shown by Libioulle et al. [17] who used CaCl,
electrochemical solution followed by an electrochemical etching in
H,S04 for sharpening tips in safer conditions than the highly toxic
cyanide etchant. Lindhal et al. had presented a method to fabricate
sharp Pt/Ir tips which consists of three electrochemical etching
steps in two kinds of solution [18]. In 1999, A. H. Serensen et al. [28]
reported a detailed study of the Pt/Ir tip fabrication in two steps.
Considering the influence of bubbles on the tip geometry during
the continuous etching process with a 50 Hz voltage, the authors
have modulated the voltage applied to the tip with time spaced
bursts for a fine etching of the tip (the second etching step). As the
delayed voltage bursts allow the far away diffusion of chloride ions
insulating layer around the Pt/Ir shank between each pause [28,29].
Later Pt/Ir tips etched from a “U” shape wire using an inverse ge-
ometry combined with a sinusoidal 0.7 V voltage at 100 Hz were
found to present apex radii around 20 nm [30].

From this analysis of the state of art of manufacturing ultra-
sharp tips, W tips are notably easier to fabricate sharper than Pt
based ones but considering the chemical inertness of Pt/Ir when
compared to W, tips made from a Pt/Ir wire appear well fitted for
mounting on a tuning fork probe for combined STM and AFM op-
erations in an ultra-high vacuum (UHV) environment without the
need to install additional tip cleaning facilities in the UHV chamber.

In this paper, we report the optimization of an electrochemical
etching process yielding reproducible fabrication of ultra-sharp and
conductive Pt/Ir tips. We first describe the geometry of the elec-
trochemical cell and the operating conditions to control the etching
process of a Pt/Ir tip using a dedicated electronic device. Afterward

the obtained tip geometry is observed by scanning electron mi-
croscopy (SEM) and finally characterized by field electron emission.
As demonstration of their performances, each etched tip once
glued onto a quartz tuning fork operating in qPlus configuration, is
used as a scanning probe for high resolution imaging both in STM
and AFM regulations (UHV, room temperature) of epitaxial gra-
phene layer on reconstructed 6H—SiC(0001) surface.

2. Experiment

The STM/AFM probe is based on a quartz tuning fork (Citizen
America CFS206, 32,768 Hz) configured in qPlus arrangement
(Fig. 1). The preparation of an operational probe equipped with a
sharp Pt/Ir tip needs a four step procedure with several character-
izations of the tip/tuning fork assembly. In the first step, the tuning
fork resonator was mounted on a modified UHV VT-AFM Omicron
tripod holder. A prong of the tuning fork is strongly fixed on the
macor ceramic part with non-conductive epoxy glue (H77 Epotek,
Epoxy Technology, USA) while the electrical contacts were estab-
lished with silver containing conductive epoxy glue (H21D Epotek,
Epoxy Technology, USA). Both glues are UHV compatible and their
curing conditions were 120 °C during 1 h. At this stage, the
measured value of the quality factor for the tuning fork oscillating
in air is at least 1000. High quality factor values are mandatory to
enhance the detection sensitivity during AFM scanning.

In the second step, a 50 pm diameter Pt/Ir wire (Pt90/Ir10,
Goodfellow, Cambridge Ltd — Huntingdon), was attached to the top
of the free prong of the tuning fork using the H21D conductive
epoxy glue.

The third step is devoted to the tip fabrication. First, the fixed Pt/
Ir wire was plunged into a CaCl, aqueous solution (CaCl, 5 g, H,O
30 ml, acetone 2 ml) [16,17| supported by a Pt ring with an outer
diameter of 2 mm (Fig. 2) (CaCl,, 2H,0 was purchased from NOR-
MAPUR™ AR VWR international Prolabo (Leuven, Belgium)). The
wire length in solution was adjusted with a micrometer precision
mechanical screw in the reverse etching geometry suggested by
Fotino [31] as illustrated in Fig. 2(A). The advantage of this geom-
etry for the tip formation is that the bubbles escape from the etched
wire which may induce beneficial shear forces towards the apex of
the etched tip improving its sharpness. In fact, the bubbles slide
along the etched cone in contrast with a normal cell geometry in
which some of them are trapped by the buoyant force onto surface
defects of the tip.

The formation of a sharp tip is highly dependent on the wave-
form, frequency and amplitude parameters of the applied etching
current. Fig. 2(B) depicts the schematics of the developed elec-
tronics to control these parameters. Due to that the etching rate of
platinum increases for decreasing frequency below 50 Hz [29], the
etching signal is based on a burst sinusoidal waveform of 100 ms,

< Pt/Irtip  Qplus sensor
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Fig. 1. Home-made qPlus sensor. One prong of a tuning fork is fixed to a macor ceramic
plate, the other free prong has a Pt/Ir tip attached to it at the very end.
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Fig. 2. Schematic of the reverse electrochemical etching set-up for ultra-sharp tip
fabrication from Pt/Ir wire. (A) Reverse electrochemical cell with a Pt/Ir ring as a
counter electrode (wire diameter 0.25 mm, outer ring diameter ~2 mm). The immer-
sion length of the Pt/Ir wire is critical (a and b wires correspond to connections with
the electronic device). (B) Schematic diagram of electronic system for controlling the
etching process. A sinusoidal voltage trigged by 100 ms pulses of 1 s period is amplified
by an audio power amplifier to generate a burst signal (400 Hz, 22 Vp-p). The etching
current ‘I’ circulating in the cell is converted into a voltage signal. Then a voltage
comparator controls a relay for stopping the etching process when the etching current
‘T is less than the reference setpoint ‘Iief @ Vief. (C) Waveform of the signal applied on
the etching cell to etch Pt/Ir tips.

with a carrier frequency of 400 Hz, and triggered by a pulsed signal
of a period of 1 s, as shown on Fig. 2(C). Thus, the bubbles and
platinum complexes formed during the etching process are
removed in the pauses [28] and the solution concentration stays
constant along the tip surface. This modulated voltage applied to
the electrochemical cell generates the etching current ‘I' whose
intensity converted into voltage by the transimpedance amplifier is
compared to a reference signal (‘Vief, setpoint defined by the user)
through a voltage comparator. Then, the output of the comparator
controls the switching of a relay, opening the circuit and stopping
the etching when the etching current becomes smaller than the
setpoint ‘Vief. This automatic switch-off system improves the
reproducibility of the tip shape.

At the end of the process, the tip was immersed by 0.25 mm into
a fresh etchant solution. One pulse of the etching voltage (22 Vp-p
ac 400 Hz) was applied manually in order to remove the possible
presence of a contamination layer on the immersed Pt/Ir tip as
observed in previous studies [28]. We noted that during the tips
fabrication process the manufacturing reproducibility is affected by
mechanics vibrations of the work-table and for solve this problem,
all electrochemical system was supported on an anti-vibration
table.

Next, the etched tips are thoroughly washed with hot Milli-Q
water bath at 80 °C, then by an ethanol flux and dried in an oven
at 120 °C for 10 min. Then, some tips are observed by SEM (JEOL
JSM-5510 LV, resolution limit of 10 nm). All of them are finally
characterized by field electron emission to obtain FN plots. Such a
plot is a convenient and well established method to characterize
the mean radius of curvature of the tip apex in which the intensity
of the electron emission current (I) from the studied tip is measured
as a function of the applied voltage (V) onto a counter electrode. In
the FN regime, under the approximation of Spindt et al. [32], [ varies
as shown by the equation [33]:

I= A(F2/¢) exp(9.84/¢1/2)exp( —6.49 x 109¢3/2/F) 1)

with [ the current intensity (A), A is a constant, ¢ (the local work
function of the material of the tip) in eV (¢ = 5.7 eV for Pt/Ir [34]), F
is the local electric field related to the applied voltage V via F = §V
with 6 = 1/kR being the field conversion factor, R is the curvature
radius of the tip apex and k is the field reduction factor that de-
pends on the exact tip geometry and the distance between the tip
apex and the counter electrode [7,35]. However, k can reach values
between 3 and 35 as reported for tungsten tips [7,13,20—22,24—26].
Dividing the equation (1) by V? and taking the nature logarithm on
both sides, we obtain:

In(1/v?) = Ln(Ag? [¢) +9.84 / ¢'/2
~ (649 x10°6*2 /) (1/v)

From the slope ‘m’ of the linear variation of the FN plot Ln(I/V?)
vs 1/V, we can obtain:

(2)

kR = —m / 6.49 x 10%¢3/2 (3)

with a model of the tip geometry for estimating k, the value of R can
be deduced from the FN plots.

Our combined UHV STM/AFM system was previously described
in [3]. Briefly, it consists of a modified VT Omicron microscope
coupled to a homemade dual preamplifier connected to a
NANONIS-SPECS controller. The oscillation of the tip fixed to a qPlus
probe was set to typically 1 to 2 dangstroms amplitude with a
resonance frequency falling to 30 kHz due to the added mass of the
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glued tip. The scanning probe microscope was driven following
three modes of distance regulation. First, the Z distance between
the non-oscillating tip and the sample is regulated via the intensity
of the tunneling current (Static STM mode or standard STM oper-
ation). Second, in dynamic STM mode, the Z distance regulation is
performed via the mean intensity of the tunneling current estab-
lished between the oscillating tip and the sample. Dynamic STM
images are obtained simultaneously with maps of the variation of
the frequency shift sensitive to the force gradients between the tip
end and the surface. Third, in frequency modulated AFM (FM-AFM)
mode, the Z distance regulation is realized using the resonance
frequency shift of the oscillating probe. FM-AFM topography im-
ages are obtained simultaneously with maps of the mean tunneling
current intensity. WSxM [36] or Gwyddion [37] software have been
used for the image processing.

The 6H—SiC(0001) samples from NovaSiC were first ex situ
chemically cleaned including trichlorethylene, acetone, and meth-
anol in an ultrasonic bath. Then the sample was immediately
introduced into UHV and treated in situ by resistive heating. After
degassing for 8 h at 600 °C, the sample was annealed for 5 min at
different temperatures between 800 °C and 1300 °C by steps of
50 °C at a base pressure lower than 10~ mbar [38]. The samples of
epitaxial graphene grown on the SiC(0001) surface were trans-
ferred in air to the STM/AFM chamber. Once in the UHV chamber
(5 x 107'° mbar) of the AFM/STM microscope, the samples were
heated at 500—550 °C (Pyrometer Raytek) for 1 h to remove
contamination induced by atmosphere exposition and cooled for
2 h down to room temperature before AFM/STM observations.

3. Results and discussion
3.1. Fabrication of sharp and clean Pt/Ir tips

In a first attempt, tips with a sharp apex were obtained by
electrochemical etching of a 0.5 mm immersed wire in a fresh CaCl,
electrolytic solution in the reverse configuration shown in Fig. 2(A).
However, the tip shapes present a rather large dispersion of the
apex radius values as revealed by SEM observations (not shown
here) for a sinusoidal voltage of 22 Vp-p at 400 Hz applied on the
Pt/Ir wire up to the end of the etching process. In the second
approach, the sinusoidal voltage of 22 Vp-p at 400 Hz was triggered
with 100 ms duration with 1 Hz repeating frequency (Fig. 2(C)).
Furthermore, the etching process was switched off when the mean
etching current decreased below a preset threshold defined by the
user as a setpoint (Fig. 2(B)). As previously pointed out [28], a pe-
riodic burst etching signal canceled the screening effect of the
bubble flux on the etching current and favors dilution of the Pt
compounds during pause.

The sharpest tips were obtained with the etching switch-off
threshold set at 20 mA. A typical time variation of the amplitude
of the etching current intensity is reported in Fig. 3.

Fig. 4 shows SEM pictures of typical Pt/Ir tips obtained in these
conditions. The surface of the cone forming the tips appears smooth
and the curvature radii of the tip apex are around 23 + 5 nm.

Several tips prepared following this procedure were character-
ized in the field emission chamber for estimating the tip radius
curvature from Fowler—Nordheim plots as depicted on Fig. 5.

We noticed that the onset of measured emission current is
~1 nA. Furthermore we pay attention to limit the current to a few
pA in order to prevent any tip heating which would yield blunt tips.
Deduced from the slope of the linear part of Fowler—Nordheim
plots, we obtain kR values around 48 nm with ones at 45 and
34 nm. On the other hand, Schirmeisen et al. [20] report a kR value
of 119.5 nm from a Fowler—Nordheim plot and for a polycrystalline
W tip. Years later, a series of W tips, fabricated by Lucier et al.
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Fig. 3. Time evolution of the amplitude of the etching current.

Fig. 4. Scanning Electron Microscopy micrographs of 3 etched Pt/Ir tips with the same
electrochemical conditions. Images (a), (b) and (c) display the shape of the tips at low
magnification (white scale bar represents 10 micrometers); (d) show the apex of the
tip respectively (yellow scale bar represents 100 nm). The red circle has a 23 + 5 nm
radius. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

[21,22], present kR values between 65 and 137 nm. The SEM images
of these tips reveal an apex radius ranging from 20 to 40 nm. Then,
Hagedorn et al. [24,25] determined that W (111) tips present an
apex radius of r < 10 nm from FIM observations while the measured
KR value varies between 122 and 248 nm. From these investigations
we verified that the characterization for Pt/Ir tips from Fowl-
er—Nordheim plots has relatively been less investigated [39] than
one for W tips [20—22,24,25,27]. We show that our fabricated Pt/Ir
tips present kR values lower than those obtained by Schirmeisen
etal. [20], Lucier et al. [21,22], and Hagedorn et al. [24,25], reported
for sharp W tips.

However, for estimate the apex radius of our fabricated tips its
necessary know the k value, which depends on the tip shape and
the distance ‘d’ between the tip apex and the counter electrode
[7,35]. Values of k ~ 5 is adequate for most geometries encountered
in practice [7,35]. Nakamura et al. [13] use a k value of 5 for to es-
timate the curvature radius of theirs fabricated W tips experi-
mentally. Schirmeissen et al. [20] find that k reaches values as high
as 35 for W tips with an apex radius ~2.5 nm and a value of 18 for
ones with an apex radius between 5 and 7 nm. More recently,
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Fig. 5. Fowler—Nordheim plots of four Pt/Ir tips. The slopes of curve, proportional to
the product kR, exhibit a small dispersion. With k = 5.6, the tip radius ranges from
6 nm to 9 nm.

Hagedorn et al. [24,25] assuming a maxima k factor of 35 for to
determine the minimum apex radius of their W tips manufactured.
Lucier et al. [21,22] obtained k values of 3.3 and 3.4 deduced from
the tip radius determined SEM images and the kR values obtained
from Fowler—Nordheim plots.

In this work, the tip apex can be modeled as a paraboloid of
revolution [35] in agreement with Fig. 4(d) and the expression for k
is: k = 0.5Ln(d/R), where R is the curvature radius of the tip. With

Fig. 6. Constant current STM images obtained with a non-oscillating tip showing the
coexistence of two hexagonal lattices of the epitaxial graphene layer on reconstructed
6H-SiC(0001) surface: the large yellow spots correspond to the well-known
(6v/3 x 6v/3) R30° lattice of the reconstructed SiC surface (green mesh) and the pe-
riodic arrangement of small brown spots to the graphene. The inset displays the atomic
lattice of the graphene highlighted by the blue hexagons. It = 300 pA,
Vsample = —50 mV. The Z scale is 71 pm for both images. Scale bars: 1 nm and 0.5 nm in
the inset. The data were filtered by Fast Fourier Transform in the inset. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

the value kR = ¢ known, we resolve the nonlinear equation to
obtain an estimate value for ‘k’:

k — (o/d)exp(2k) = 0 (4)

with d = 0.5 mm and kR values of 34, 45, 48 and 48, we obtain k
values between 5.5 and 5.7 smaller than those reported by other
authors [24,25] that using a high k value to expect a small value of
R. We verified that the k values obtained are close to k = 5 reported
by [7,13,35]. From the measured kR values in Fig. 5 and an average k
value of 5.6 yields to 6 nm < R < 9 nm, a tip radius smaller than the
measured ones in the SEM micrograph in Fig. 4(d), with limited
resolution, and ones extracted from SEM images by Lucier et al.
[21,22] and Mousa et al. [27].

3.2. STM/AFM images for testing the tip geometry

In order to characterize the sharpness and conductivity of the
Pt/Ir tip apex, normal STM, dynamic STM and FM-AFM images were
recorded on a 6H—SiC(0001) surface covered by a graphene layer.
Fig. 6 presents constant current STM images obtained with a Pt/Ir
tip attached on a non-oscillating qPlus probe.

Two lattices can be recognized. The first one with a period of
3.2 nm corresponds to the well-known (6v/3 x 6v/3) R30° recon-
struction of the buffer layer on a 6H—SiC(0001) surface [40—42].
The other lattice formed by hexagons with a period between
neighboring centers of 0.24 nm as shown in the inset is assigned to
the epitaxial graphene layer covering the reconstructed SiC surface.
As previously reported [40] the relationship between the two

Fig. 7. Dynamic STM topography (a) and map of frequency shift Af (b) simultaneously
recorded on the epitaxial graphene layer on the (6v/3 x 6v/3) R30° reconstruction of
the 6H—SiC(0001) surface. (6v/3 x 6v/3) R30° unit cell (green) and (6 x 6) quasi-cell
(blue) are indicated by diamonds. We noticed that Af map, proportional to the force
gradient, is positive meaning that the tip/surface interaction is mainly repulsive.
(Vsample = —200 mV, <Iy> = 12 pA, oscillation amplitude = 0.12 nm). Z scales: (a)
0—60 pm, (b) 27—33 Hz. In the insets are presented the corresponding high resolution
images showing in (a) the graphene atomic lattice obtained in dynamic STM mode and
in (b) the Af map modulations due to the graphene lattice. In both insets, the arrows
show the graphene lattice (period 0.24 nm). Images in the insets were FFT filtered and
corrected from drift. Black and white scale bars represent 10 nm and 1 nm respectively.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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lattices can be verified since 13 periods of graphene fit one period of
the reconstructed SiC(0001) surface. These high-resolution STM
images which are very similar to results obtained with W [41] and
Pt/Ir [40] tips, clearly demonstrate the high quality of our Pt/Ir tips.

Next, we switched to dynamic STM mode maintaining constant
the oscillation amplitude of the probe. The Z distance regulation of
the microscope was now driven by the mean value of the tunneling
current <Ip>. In this operating mode, dynamic STM images of
graphene on the SiC surface were obtained with maps of the vari-
ation of the frequency shift of the probe. Both images show the SiC
reconstruction lattice as illustrated in Fig. 7.

The lattice with a 0.24 nm period, clearly observed on the dy-
namic STM images shown in the inset of Fig. 7(a), indicates the
presence of the graphene layer. It is worth pointing out that the
same lattice is evidenced in the map of frequency shift. As a
consequence, Fig. 7(b) and the inset demonstrate that the tip/sur-
face interaction is modulated with 1.9 nm and 0.24 nm periods
when the tip scans in STM mode the graphene layer in epitaxy on
the 6H—SiC(0001) (6v/3 x 6v/3) R30° reconstructed surface. The
lattice with a 1.9 nm periodicity is attributed to the (6 x 6) quasi-
cell of the underlying reconstructed SiC surface.

Finally, we switched to FM-AFM mode with distance regulation
performed with the resonance frequency shift signal. Both the
topography at constant resonance frequency shift and the map of
variation of the mean tunneling current intensity exhibit a lattice
with a 1.9 nm period which is identified with the (6 x 6) recon-
struction of the 6H—SiC(0001) surface. To the best of our knowl-
edge, we emphasize that the images in Fig. 8 are the first showing
AFM topography, simultaneously recorded with a mean tunneling
current map, of an epitaxial graphene layer on reconstructed
SiC(0001) surface obtained at room temperature and showing the

Fig. 8. FM-AFM topography (a) and map of the mean tunneling current (b) simulta-
neously recorded on an epitaxial graphene layer on the (6v/3 x 6v/3) R30° recon-
struction of the 6H—SiC(0001) surface. (6v/3 x 6v/3) R30° unit cell (green) and (6 x 6)
quasi-cell (blue) are indicated by diamonds. The arrows show protrusions in the mean
tunneling current map (b) which are not related to feature in (a). Af = +15 Hz.
Oscillation amplitude 0.12 nm, Vsample = —5 mV, scale bar = 10 nm. Z scales in (a)
187 pm and in (b) 25.4—41.5 nA. Data filtered by a Gaussian smoothing. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

(6v/3 x 6v/3) R30° reconstruction structure. This AFM topography
obtained in repulsive mode is similar to the one reported by Filleter
and Benewitz and for which the tip/surface interaction was not
mentioned [43]. Interestingly, the mean tunneling current map
exhibits some bright spots probably related to local variations of
the density of states near the Fermi level which are not related to
features in the corresponding AFM topography. This will be dis-
cussed in a forthcoming paper [44].

4. Conclusions

Sharp and conductive Pt/Ir tips have been reproducibly fabri-
cated by a one stage electrochemical etching process in CaCl, so-
lution using an inverse geometry of the electrochemical cell and a
dedicated electronic device which allows us to control sequences of
alternative voltages. In these conditions, tips with a mean apex
radius smaller than 10 nm were routinely produced as demon-
strated by electron field emission measurements through Fowl-
er—Nordheim plots. As probes for a combined STM/AFM system
these tips mounted on a quartz tuning fork working in a qPlus
configuration allow us to achieve high resolution images of the
epitaxial graphene layer on (6v/3 x 6v/3) R30° reconstruction of
the 6H—SiC(0001). The surface structure was explored at room
temperature by normal STM, dynamic STM and for the first time by
FM-AFM. High resolution images of the graphene lattice were
achieved in STM mode, dynamic STM mode together with maps of
frequency shift. We are working on the controlled fabrication of
sharper tips for which we soon hope to achieve atomic resolution
on graphene layer by FM-AFM at room temperature.
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