10 research outputs found
Regulation of skeletal muscle oxidative capacity and insulin signaling by the Mitochondrial Rhomboid Protease PARL
Type 2 diabetes mellitus (T2DM) and aging are characterized by insulin resistance and impaired mitochondrial energetics. In lower organisms, remodeling by the protease pcp1 (PARL ortholog) maintains the function and lifecycle of mitochondria. We examined whether variation in PARL protein content is associated with mitochondrial abnormalities and insulin resistance. PARL mRNA and mitochondrial mass were both reduced in elderly subjects and in subjects with T2DM. Muscle knockdown of PARL in mice resulted in malformed mitochondrial cristae, lower mitochondrial content, decreased PGC1α protein levels, and impaired insulin signaling. Suppression of PARL protein in healthy myotubes lowered mitochondrial mass and insulin-stimulated glycogen synthesis and increased reactive oxygen species production. We propose that lower PARL expression may contribute to the mitochondrial abnormalities seen in aging and T2DM.<br /
The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications
The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted
Optic atrophy 1 mediates mitochondria remodeling and dopaminergic neurodegeneration linked to complex I deficiency.
none8noneRamonet D;Perier C;Recasens A;Dehay B;Bové J;Costa V;Scorrano L;Vila MRamonet, D; Perier, C; Recasens, A; Dehay, B; Bové, J; Costa, V; Scorrano, Luca; Vila, M
During autophagy mitochondria elongate, are spared from degradation and sustain cell viability.
A plethora of cellular processes, including apoptosis, depend on regulated changes in mitochondrial shape and ultrastructure. Scarce is our understanding of the role of mitochondria and of their morphology during autophagy, a bulk degradation and recycling process of eukaryotic cellsâ constituents. Here we show that mitochondrial morphology determines the cellular response to macroautophagy. When autophagy is triggered, mitochondria elongate in vitro and in vivo. Upon starvation cellular cAMP levels increase and protein kinase A (PKA) becomes activated. PKA in turn phosphorylates the pro-fission dynamin related protein 1 (DRP1) that is therefore retained in the cytoplasm, leading to unopposed mitochondrial fusion. Elongated mitochondria are spared from autophagic degradation, possess more cristae, increase dimerization and activity of ATP synthase, and maintain ATP production. When elongation is genetically or pharmacologically blocked, mitochondria conversely consume ATP, precipitating starvation-induced death. Thus, regulated changes in mitochondrial morphology determine the fate of the cell during autophagy
A threshold of transmembrane potential is required for mitochondrial dynamic balance mediated by DRP1 and OMA1
As an organellar network, mitochondria dynamically regulate their organization via opposing fusion and fission pathways to maintain bioenergetic homeostasis and contribute to key cellular pathways. This dynamic balance is directly linked to bioenergetic function: loss of transmembrane potential across the inner membrane (ÎÏ (m)) disrupts mitochondrial fission/fusion balance, causing fragmentation of the network. However, the level of ÎÏ (m) required for mitochondrial dynamic balance, as well as the relative contributions of fission and fusion pathways, have remained unclear. To explore this, mitochondrial morphology and ÎÏ (m) were examined via confocal imaging and tetramethyl rhodamine ester (TMRE) flow cytometry, respectively, in cultured 143B osteosarcoma cells. When normalized to the TMRE value of untreated 143B cells as 100%, both genetic (mtDNA-depleted Ï(0)) and pharmacological [carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-treated] cell models below 34% TMRE fluorescence were unable to maintain mitochondrial interconnection, correlating with loss of fusion-active long OPA1 isoforms (L-OPA1). Mechanistically, this threshold is maintained by mechanistic coordination of DRP1-mediated fission and OPA1-mediated fusion: cells lacking either DRP1 or the OMA1 metalloprotease were insensitive to loss of ÎÏ (m), instead maintaining an obligately fused morphology. Collectively, these findings demonstrate a mitochondrial âtipping pointâ threshold mediated by the interaction of ÎÏ (m) with both DRP1 and OMA1; moreover, DRP1 appears to be required for effective OPA1 maintenance and processing, consistent with growing evidence for direct interaction of fission and fusion pathways. These results suggest that ÎÏ (m) below threshold coordinately activates both DRP1-mediated fission and OMA1 cleavage of OPA1, collapsing mitochondrial dynamic balance, with major implications for a range of signaling pathways and cellular life/death events. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00018-016-2421-9) contains supplementary material, which is available to authorized users