2,315 research outputs found
Biologically meaningful coverage indicators for eliminating malaria transmission.
Mosquitoes, which evade contact with long-lasting insecticidal nets and indoor residual sprays, by feeding outdoors or upon animals, are primary malaria vectors in many tropical countries. They can also dominate residual transmission where high coverage of these front-line vector control measures is achieved. Complementary strategies, which extend insecticide coverage beyond houses and humans, are required to eliminate malaria transmission in most settings. The overwhelming diversity of the world's malaria transmission systems and optimal strategies for controlling them can be simply conceptualized and mapped across two-dimensional scenario space defined by the proportion of blood meals that vectors obtain from humans and the proportion of human exposure to them which occurs indoors
A crossover study to evaluate the diversion of malaria vectors in a community with incomplete coverage of spatial repellents in the Kilombero Valley, Tanzania
Malaria elimination is unlikely to occur if vector control efforts focus entirely on transmission occurring indoors without addressing vectors that bite outdoors and outside sleeping hours. Additional control tools such as spatial repellents may provide the personal protection required to fill this gap. However, since repellents do not kill mosquitoes it is unclear if vectors will be diverted from households that use spatial repellents to those that do not.; A crossover study was performed over 24 weeks in Kilombero, Tanzania. The density of resting and blood-engorged mosquitoes and human blood index (HBI) of malaria vector species per household was measured among 90 households using or not using 0.03 % transfluthrin coils burned outdoors under three coverage scenarios: (i) no coverage (blank coils); (ii) complete coverage of repellent coils; and (iii) incomplete coverage of repellent and blank coils. Mosquitoes were collected three days a week for 24 weeks from the inside and outside of all participating households using mosquito aspirators. Paired indoor and outdoor human landing collections were performed in three random households for six consecutive nights to confirm repellent efficacy of the coils and local vector biting times.; The main vectors were Anopheles arabiensis and Anopheles funestus (sensu stricto), which fed outdoors, outside sleeping hours, on humans as well as animals. Anopheles arabiensis landings were reduced by 80 % by the spatial repellent although household densities were not reduced. The HBI for An. arabiensis was significantly higher among households without repellents in the incomplete coverage scenario compared to houses in the no coverage scenario (Odds ratio 1.71; 95 % CI: 1.04-2.83; P = 0.03). This indicated that An. arabiensis mosquitoes seeking a human blood meal were diverted from repellent users to non-users. The repellent coils did not affect An. funestus densities or HBI.; Substantial malaria vector activity is occurring outside sleeping hours in the Kilombero valley. Repellent coils provided some protection against local An. arabiensis but did not protect against local (and potentially pyrethroid-resistant) An. funestus. Pyrethroid-based spatial repellents may offer a degree of personal protection, however the overall public health benefit is doubtful and potentially iniquitous as their use may divert malaria vectors to those who do not use them
An experimental hut study to quantify the effect of DDT and airborne pyrethroids on entomological parameters of malaria transmission
<b>Background</b><p></p>
Current malaria vector control programmes rely on insecticides with rapid contact toxicity. However, spatial repellents can also be applied to reduce man-vector contact, which might ultimately impact malaria transmission. The aim of this study was to quantify effects of airborne pyrethroids from coils and DDT used an indoor residual spray (IRS) on entomological parameters that influence malaria transmission.<p></p>
<b>Methods</b><p></p>
The effect of Transfluthrin and Metofluthrin coils compared to DDT on house entry, exit and indoor feeding behaviour of Anopheles gambiae sensu lato were measured in experimental huts in the field and in the semi-field. Outcomes were deterrence - reduction in house entry of mosquitoes; irritancy or excito-repellency – induced premature exit of mosquitoes; blood feeding inhibition and effect on mosquito fecundity.<p></p>
<b>Results</b><p></p>
Transfluthrin coils, Metofluthrin coils and DDT reduced human vector contact through deterrence by 38%, 30% and 8%, respectively and induced half of the mosquitoes to leave huts before feeding (56%, 55% and 48%, respectively). Almost all mosquitoes inside huts with Metofluthrin and Transfluthrin coils and more than three quarters of mosquitoes in the DDT hut did not feed, almost none laid eggs and 67%, 72% and 70% of all mosquitoes collected from Transfluthrin, Metofluthrin and DDT huts, respectively had died after 24 hours.<p></p>
<b>Conclusion</b><p></p>
This study highlights that airborne pyrethroids and DDT affect a range of anopheline mosquito behaviours that are important parameters in malaria transmission, namely deterrence, irritancy/excito-repellency and blood-feeding inhibition. These effects are in addition to significant toxicity and reduced mosquito fecundity that affect mosquito densities and, therefore, provide community protection against diseases for both users and non-users. Airborne insecticides and freshly applied DDT had similar effects on deterrence, irritancy and feeding inhibition. Therefore, it is suggested that airborne pyrethroids, if delivered in suitable formats, may complement existing mainstream vector control tools
Mosquito repellents for malaria prevention
Background
Malaria is an important cause of illness and death across endemic regions. Considerable success against malaria has been achieved within the past decade mainly through long-lasting insecticide-treated nets (LLINs). However, elimination of the disease is proving difficult as current control methods do not protect against mosquitoes biting outdoors and when people are active. Repellents may provide a personal protection solution during these times.
Objectives
To assess the impact of topical repellents, insecticide-treated clothing, and spatial repellents on malaria transmission.
Search methods
We searched the following databases up to 26 June 2017: the Cochrane Infectious Diseases Group Specialized Register; the Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE; Embase; US AFPMB; CAB Abstracts; and LILACS. We also searched trial registration platforms and conference proceedings; and contacted organizations and companies for ongoing and unpublished trials.
Selection criteria
We included randomized controlled trials (RCTs) and cluster-randomized controlled trials of topical repellents proven to repel mosquitoes; permethrin-treated clothing; and spatial repellents such as mosquito coils. We included trials that investigated the use of repellents with or without LLINs, referred to as insecticide-treated nets.
Data collection and analysis
Two review authors independently reviewed trials for inclusion, extracted the data, and assessed the risk of bias. A third review author resolved any discrepancies. We analysed data by conducting meta-analysis and stratified by whether the trials had included LLINs. We combined results from cRCTs with individually RCTs by adjusting for clustering and presented results using forest plots. We used GRADE to assess the certainty of the evidence.
Main results
Eight cRCTs and two RCTs met the inclusion criteria. Six trials investigated topical repellents, two trials investigated insecticide-treated clothing, and two trials investigated spatial repellents.
Topical repellents
Six RCTS, five of them cluster-randomized, investigated topical repellents involving residents of malaria-endemic regions. Four trials used topical repellents in combination with nets, but two trials undertaken in displaced populations used topical repellents alone. It is unclear if topical repellents can prevent clinical malaria (RR 0.65, 95% CI 0.4 to 1.07, very low certainty evidence) or malaria infection (RR 0.84, 95% CI 0.64 to 1.12, low-certainty evidence) caused by P. falciparum. It is also unclear if there is any protection against clinical cases of P. vivax (RR 1.32, 95% CI 0.99 to 1.76, low-certainty evidence) or incidence of infections (RR 1.07, 95% CI 0.80 to 1.41, low-certainty evidence). Subgroup analysis of trials including insecticide-treated nets did not show a protective effect of topical repellents against malaria. Only two studies did not include insecticide-treated nets, and they measured different outcomes; one reported a protective effect against clinical cases of P. falciparum (RR 0.40, 95% CI 0.23 to 0.71); but the other study measured no protective effect against malaria infection incidence caused by either P. falciparum or P. vivax.
Insecticide-treated clothing
Insecticide-treated clothing were investigated in trials conducted in refugee camps in Pakistan and amongst military based in the Colombian Amazon. Neither study provided participants with insecticide-treated nets. In the absence of nets, treated clothing may reduce the incidence of clinical malaria caused by P. falciparum by approximately 50% (RR 0.49, 95% CI 0.29 to 0.83, low-certainty evidence) and P. vivax (RR 0.64, 95% CI 0.40 to 1.01, low-certainty evidence).
Spatial repellents
Two cluster-randomized RCTs investigated mosquito coils for malaria prevention. We do not know the effect of spatial repellents on malaria prevention (RR 0.24, 95% CI 0.03 to 1.72, very low certainty evidence). There was large heterogeneity between studies and one study had high risk of bias.
Authors' conclusions
There is insufficient evidence to conclude topical or spatial repellents can prevent malaria. There is a need for better designed trials to generate higher certainty of evidence before well-informed recommendations can be made. Adherence to daily compliance remains a major limitation. Insecticide-treated clothing may reduce risk of malaria infection in the absence of insecticide-treated nets; further studies on insecticide-treated clothing in the general population should be done to broaden the applicability of the results
Evaluating RNAlater® as a preservative for using near-infrared spectroscopy to predict Anopheles gambiae age and species.
Mosquito age and species identification is a crucial determinant of the efficacy of vector control programmes. Near-infrared spectroscopy (NIRS) has previously been applied successfully to rapidly, non-destructively, and simultaneously determine the age and species of freshly anesthetized African malaria vectors from the Anopheles gambiae s.l. species complex: An. gambiae s. s. and Anopheles arabiensis. However, this has only been achieved on freshly-collected specimens and future applications will require samples to be preserved between field collections and scanning by NIRS. In this study, a sample preservation method (RNAlater(®)) was evaluated for mosquito age and species identification by NIRS against scans of fresh samples. Two strains of An. gambiae s.s. (CDC and G3) and two strains of An. arabiensis (Dongola, KGB) were reared in the laboratory while the third strain of An. arabiensis (Ifakara) was reared in a semi-field system. All mosquitoes were scanned when fresh and rescanned after preservation in RNAlater(®) for several weeks. Age and species identification was determined using a cross-validation. The mean accuracy obtained for predicting the age of young (<7 days) or old (≥ 7 days) of all fresh (n = 633) and all preserved (n = 691) mosquito samples using the cross-validation technique was 83% and 90%, respectively. For species identification, accuracies were 82% for fresh against 80% for RNAlater(®) preserved. For both analyses, preserving mosquitoes in RNAlater(®) was associated with a highly significant reduction in the likelihood of a misclassification of mosquitoes as young or old using NIRS. Important to note is that the costs for preserving mosquito specimens with RNAlater(®) ranges from 3-13 cents per insect depending on the size of the tube used and the number of specimens pooled in one tube. RNAlater(®) can be used to preserve mosquitoes for subsequent scanning and analysis by NIRS to determine their age and species with minimal costs and with accuracy similar to that achieved from fresh insects. Cold storage availability allows samples to be stored longer than a week after field collection. Further study to develop robust calibrations applicable to other strains from diverse ecological settings is recommended
Comparative performance of three experimental hut designs for measuring malaria vector responses to insecticides in Tanzania.
BACKGROUND: Experimental huts are simplified, standardized representations of human habitations that provide model systems to evaluate insecticides used in indoor residual spray (IRS) and long-lasting insecticidal nets (LLINs) to kill disease vectors. Hut volume, construction materials and size of entry points impact mosquito entry and exposure to insecticides. The performance of three standard experimental hut designs was compared to evaluate insecticide used in LLINs. METHODS: Field studies were conducted at the World Health Organization Pesticide Evaluation Scheme (WHOPES) testing site in Muheza, Tanzania. Three East African huts, three West African huts, and three Ifakara huts were compared using Olyset(®) and Permanet 2.0(®) versus untreated nets as a control. Outcomes measured were mortality, induced exophily (exit rate), blood feeding inhibition and deterrence (entry rate). Data were analysed using linear mixed effect regression and Bland-Altman comparison of paired differences. RESULTS: A total of 613 mosquitoes were collected in 36 nights, of which 13.5% were Anopheles gambiae sensu lato, 21% Anopheles funestus sensu stricto, 38% Mansonia species and 28% Culex species. Ifakara huts caught three times more mosquitoes than the East African and West African huts, while the West African huts caught significantly fewer mosquitoes than the other hut types. Mosquito densities were low, very little mosquito exit was measured in any of the huts with no measurable exophily caused by the use of either Olyset or Permanet. When the huts were directly compared, the West African huts measured greater exophily than other huts. As unholed nets were used in the experiments and few mosquitoes were captured, it was not possible to measure difference in feeding success either between treatments or hut types. In each of the hut types there was increased mortality when Permanet or Olyset were present inside the huts compared to the control, however this did not vary between the hut types. CONCLUSIONS: Both East African and Ifakara huts performed in a similar way although Ifakara huts allowed more mosquitoes to enter, increasing data power. The work convincingly demonstrates that the East African huts and Ifakara huts collect substantially more mosquitoes than the West African huts
Thoracic hyperextension injury with complete “bony disruption” of the thoracic cage: Case report of a potentially life-threatening injury
BACKGROUND: Severe chest wall injuries are potentially life-threatening injuries which require a standardized multidisciplinary management strategy for prevention of posttraumatic complications and adverse outcome. CASE PRESENTATION: We report the successful management of a 55-year old man who sustained a complete “bony disruption” of the thoracic cage secondary to an “all-terrain vehicle” roll-over accident. The injury pattern consisted of a bilateral “flail chest” with serial segmental rib fractures, bilateral hemo-pneumothoraces and pulmonary contusions, bilateral midshaft clavicle fractures, a displaced transverse sternum fracture with significant diastasis, and an unstable T9 hyperextension injury. After initial life-saving procedures, the chest wall injuries were sequentially stabilized by surgical fixation of bilateral clavicle fractures, locked plating of the displaced sternal fracture, and a two-level anterior spine fixation of the T9 hyperextension injury. The patient had an excellent radiological and physiological outcome at 6 months post injury. CONCLUSION: Severe chest wall trauma with a complete “bony disruption” of the thoracic cage represents a rare, but detrimental injury pattern. Multidisciplinary management with a staged timing for addressing each of the critical injuries, represents the ideal approach for an excellent long-term outcome
Exploring Expressions of Possible Selves with High School and College Students with Learning Disabilities
In this article, we explore a program designed to engage high school and college students with learning disabilities (LD) in conversations about their hopes, expectations, and fears for the future. We explore the mindset of students by focusing on their self-identified passions for life and sense of strengths and limitations. We found that males and females differed in goals related to Academics, Work Ethic, Degree Specific Statements, and Money and Finances. For example, females emphasized “Academic Goals” more frequently than males and focused on topics such as GPA and work ethic in school. However, males made more “Degree Specific Statements” than females, more often emphasizing the desire to be financially stable or have a career with a large income. These differences suggest that college transition staff may want to focus on goals identified by male and female students with LD as a way to be more responsive to student self-identified goals
Simplified Models of Vector Control Impact upon Malaria Transmission by Zoophagic Mosquitoes
BACKGROUND\ud
\ud
High coverage of personal protection measures that kill mosquitoes dramatically reduce malaria transmission where vector populations depend upon human blood. However, most primary malaria vectors outside of sub-Saharan Africa can be classified as "very zoophagic," meaning they feed occasionally (<10% of blood meals) upon humans, so personal protection interventions have negligible impact upon their survival.\ud
\ud
METHODS AND FINDINGS\ud
\ud
We extended a published malaria transmission model to examine the relationship between transmission, control, and the baseline proportion of bloodmeals obtained from humans (human blood index). The lower limit of the human blood index enables derivation of simplified models for zoophagic vectors that (1) Rely on only three field-measurable parameters. (2) Predict immediate and delayed (with and without assuming reduced human infectivity, respectively) impacts of personal protection measures upon transmission. (3) Illustrate how appreciable indirect communal-level protection for non-users can be accrued through direct personal protection of users. (4) Suggest the coverage and efficacy thresholds required to attain epidemiological impact. The findings suggest that immediate, indirect, community-wide protection of users and non-users alike may linearly relate to the efficacy of a user's direct personal protection, regardless of whether that is achieved by killing or repelling mosquitoes. High protective coverage and efficacy (≥80%) are important to achieve epidemiologically meaningful impact. Non-users are indirectly protected because the two most common species of human malaria are strict anthroponoses. Therefore, the small proportion of mosquitoes that are killed or diverted while attacking humans can represent a large proportion of those actually transmitting malaria.\ud
\ud
CONCLUSIONS\ud
\ud
Simplified models of malaria transmission by very zoophagic vectors may be used by control practitioners to predict intervention impact interventions using three field-measurable parameters; the proportion of human exposure to mosquitoes occurring when an intervention can be practically used, its protective efficacy when used, and the proportion of people using it
- …