4,480 research outputs found

    Spectral gene set enrichment (SGSE)

    Get PDF
    Motivation: Gene set testing is typically performed in a supervised context to quantify the association between groups of genes and a clinical phenotype. In many cases, however, a gene set-based interpretation of genomic data is desired in the absence of a phenotype variable. Although methods exist for unsupervised gene set testing, they predominantly compute enrichment relative to clusters of the genomic variables with performance strongly dependent on the clustering algorithm and number of clusters. Results: We propose a novel method, spectral gene set enrichment (SGSE), for unsupervised competitive testing of the association between gene sets and empirical data sources. SGSE first computes the statistical association between gene sets and principal components (PCs) using our principal component gene set enrichment (PCGSE) method. The overall statistical association between each gene set and the spectral structure of the data is then computed by combining the PC-level p-values using the weighted Z-method with weights set to the PC variance scaled by Tracey-Widom test p-values. Using simulated data, we show that the SGSE algorithm can accurately recover spectral features from noisy data. To illustrate the utility of our method on real data, we demonstrate the superior performance of the SGSE method relative to standard cluster-based techniques for testing the association between MSigDB gene sets and the variance structure of microarray gene expression data. Availability: http://cran.r-project.org/web/packages/PCGSE/index.html Contact: [email protected] or [email protected]

    Principal component gene set enrichment (PCGSE)

    Get PDF
    Motivation: Although principal component analysis (PCA) is widely used for the dimensional reduction of biomedical data, interpretation of PCA results remains daunting. Most existing methods attempt to explain each principal component (PC) in terms of a small number of variables by generating approximate PCs with few non-zero loadings. Although useful when just a few variables dominate the population PCs, these methods are often inadequate for characterizing the PCs of high-dimensional genomic data. For genomic data, reproducible and biologically meaningful PC interpretation requires methods based on the combined signal of functionally related sets of genes. While gene set testing methods have been widely used in supervised settings to quantify the association of groups of genes with clinical outcomes, these methods have seen only limited application for testing the enrichment of gene sets relative to sample PCs. Results: We describe a novel approach, principal component gene set enrichment (PCGSE), for computing the statistical association between gene sets and the PCs of genomic data. The PCGSE method performs a two-stage competitive gene set test using the correlation between each gene and each PC as the gene-level test statistic with flexible choice of both the gene set test statistic and the method used to compute the null distribution of the gene set statistic. Using simulated data with simulated gene sets and real gene expression data with curated gene sets, we demonstrate that biologically meaningful and computationally efficient results can be obtained from a simple parametric version of the PCGSE method that performs a correlation-adjusted two-sample t-test between the gene-level test statistics for gene set members and genes not in the set. Availability: http://cran.r-project.org/web/packages/PCGSE/index.html Contact: [email protected] or [email protected]

    FLPMA from the Perspective of the Bureau of Land Management

    Get PDF
    14 pages

    An Overview of Demise Calculations, Conceptual Design Studies, and Hydrazine Compatibility Testing for the GPM Core Spacecraft Propellant Tank

    Get PDF
    NASA's Global Precipitation Measurement (GPM) mission is an ongoing Goddard Space Flight Center (GSFC) project whose basic objective is to improve global precipitation measurements. It has been decided that the GPM spacecraft is to be a "design for demise" spacecraft. This requirement resulted in the need for a propellant tank that would also demise or ablate to an appropriate degree upon re-entry. This paper will describe GSFC-performed spacecraft and tankage demise analyses, vendor conceptual design studies, and vendor performed hydrazine compatibility and wettability tests performed on 6061 and 2219 aluminum alloys

    Principal Component Gene Set Enrichment (Pcgse)

    Get PDF
    Background: Although principal component analysis (PCA) is widely used for the dimensional reduction of biomedical data, interpretation of PCA results remains daunting. Most existing interpretation methods attempt to explain each principal component (PC) in terms of a small number of variables by generating approximate PCs with mainly zero loadings. Although useful when just a few variables dominate the population PCs, these methods can perform poorly on genomic data, where interesting biological features are frequently represented by the combined signal of functionally related sets of genes. While gene set testing methods have been widely used in supervised settings to quantify the association of groups of genes with clinical outcomes, these methods have seen only limited application for testing the enrichment of gene sets relative to sample PCs. Results: We describe a novel approach, principal component gene set enrichment (PCGSE), for unsupervised gene set testing relative to the sample PCs of genomic data. The PCGSE method computes the statistical association between gene sets and individual PCs using a two-stage competitive gene set test. To demonstrate the efficacy of the PCGSE method, we use simulated and real gene expression data to evaluate the performance of various gene set test statistics and significance tests. Conclusions: Gene set testing is an effective approach for interpreting the PCs of high-dimensional genomic data. As shown using both simulated and real datasets, the PCGSE method can generate biologically meaningful and computationally efficient results via a two-stage, competitive parametric test that correctly accounts for inter-gene correlation

    Techniques utilized in the simulated altitude testing of a 2D-CD vectoring and reversing nozzle

    Get PDF
    Simulated altitude testing of a two-dimensional, convergent-divergent, thrust vectoring and reversing exhaust nozzle was accomplished. An important objective of this test was to develop test hardware and techniques to properly operate a vectoring and reversing nozzle within the confines of an altitude test facility. This report presents detailed information on the major test support systems utilized, the operational performance of the systems and the problems encountered, and test equipment improvements recommended for future tests. The most challenging support systems included the multi-axis thrust measurement system, vectored and reverse exhaust gas collection systems, and infrared temperature measurement systems used to evaluate and monitor the nozzle. The feasibility of testing a vectoring and reversing nozzle of this type in an altitude chamber was successfully demonstrated. Supporting systems performed as required. During reverser operation, engine exhaust gases were successfully captured and turned downstream. However, a small amount of exhaust gas spilled out the collector ducts' inlet openings when the reverser was opened more than 60 percent. The spillage did not affect engine or nozzle performance. The three infrared systems which viewed the nozzle through the exhaust collection system worked remarkably well considering the harsh environment

    Distribution and abundance of submerged aquatic vegetation in the lower Chesapeake Bay, Virginia

    Get PDF
    The distribution and abundance of submerged aquatic vegetation (SAV) in the lower Chesapeake Bay and its tributaries were delineated with color aerial photography and surface information. Over 8500 hectares of SAV were identified on 31 topographic quadrangles. To enable computer retrieval of the aerial resource information, all information from the 1978 mapping effort was entered into a data base based on the Universal Transverse Mercator coordinate system. The greatest concentrations of SAV were found at the mouths of the largest tidal rivers and creeks along the Chesapeake Bay shoreline, and to the east of Tangier and Great Fox Islands. Freshwater and low salinity portions of Virginia\u27s tidal rivers were generally found lacking in large areas of SAV, although numerous small fringing beds and pocket areas associated with adjacent tidal marshes were identified

    Covariate-Adjusted Constrained Bayes Predictions of Random Intercepts and Slopes. Sujit Ghosh is a

    Get PDF
    Constrained Bayes methodology represents an alternative to the posterior mean (empirical Bayes) method commonly used to produce random effect predictions under mixed linear models. The general constrained Bayes methodology of Ghosh (1992) is compared to a direct implementation of constraints, and it is suggested that the former approach could feasibly be incorporated into commercial mixed model software. Simulation studies and a real-data example illustrate the main points and support the conclusions
    corecore