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Spectral gene set enrichment (SGSE)
H Robert Frost1,2,3*, Zhigang Li1,2 and Jason H Moore1,2,3

Abstract

Background: Gene set testing is typically performed in a supervised context to quantify the association between
groups of genes and a clinical phenotype. In many cases, however, a gene set-based interpretation of genomic data is
desired in the absence of a phenotype variable. Although methods exist for unsupervised gene set testing, they
predominantly compute enrichment relative to clusters of the genomic variables with performance strongly
dependent on the clustering algorithm and number of clusters.

Results: We propose a novel method, spectral gene set enrichment (SGSE), for unsupervised competitive testing of
the association between gene sets and empirical data sources. SGSE first computes the statistical association between
gene sets and principal components (PCs) using our principal component gene set enrichment (PCGSE) method. The
overall statistical association between each gene set and the spectral structure of the data is then computed by
combining the PC-level p-values using the weighted Z-method with weights set to the PC variance scaled by
Tracy-Widom test p-values. Using simulated data, we show that the SGSE algorithm can accurately recover spectral
features from noisy data. To illustrate the utility of our method on real data, we demonstrate the superior performance
of the SGSE method relative to standard cluster-based techniques for testing the association between MSigDB gene
sets and the variance structure of microarray gene expression data.

Conclusions: Unsupervised gene set testing can provide important information about the biological signal held in
high-dimensional genomic data sets. Because it uses the association between gene sets and samples PCs to generate
a measure of unsupervised enrichment, the SGSE method is independent of cluster or network creation algorithms
and, most importantly, is able to utilize the statistical significance of PC eigenvalues to ignore elements of the data
most likely to represent noise.

Background
Gene set testing has become an indispensable tool for the
analysis and interpretation of high dimensional genomic
data, including measures of DNA sequence variation,
DNA methylation, RNA expression and protein abun-
dance [1,2]. By focusing on the collective effect of bio-
logically meaningful groups of genomic variables, rather
than just the marginal effect of individual variables, gene
set testing methods can significantly improve statistical
power, replication of results and biological interpreta-
tion. Because of these benefits, significant effort has been
devoted over the last decade to building large reposito-
ries of functional gene sets [3-5], creating methods for
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refining and customizing these gene set collections [6-8]
and developing effective statistical techniques for gene set
testing [9-13].
Gene set testing is normally used to quantify the asso-

ciation between functional groups of genomic variables
and a clinical phenotype, e.g., cancer case/control sta-
tus. Many important use cases exist, however, where a
gene set-based interpretation of genomic data is desired
in the absence of a phenotype variable, e.g., case-only
data collections. For such unsupervised applications, the
standard approach for gene set testing involves the com-
putation of the association between gene sets and a cat-
egorical variable defined by disjoint clusters of genomic
variables. Such methods typically compute the associa-
tion between each gene set and the variable clustering
using either information theoretic measures [14,15] or
contingency table-based statistical tests which incorrectly
assume independence among the genomic variables
[16-18]. Although these techniques provide a measure of
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gene set enrichment for a given clustering of genomic
data, the motivation for most methods is cluster evalu-
ation rather than unsupervised biological interpretation.
Cluster-based gene set enrichment results are strongly
dependent on the clustering method employed and the
number of computed clusters. This sensitivity to the clus-
tering method and number of clusters makes these meth-
ods very useful for clustering evaluation but unreliable as
general measures of unsupervised gene set enrichment.
Specifically, since these methods advocate the use gene
set enrichment results to select the clustering method and
number of clusters, instead of often unreliable metrics
such as the gap statistic [19] or average silhouette width
[20], it is unclear what clustering method or number of
clusters should be used if the goal is unbiased gene set
testing.
An alternative approach for unsupervised gene set test-

ing with many similarities to cluster-based methods is
gene set enrichment of gene networks. This approach
typically involves the computation of a network from
a genomic dataset with network nodes represented by
genomic variables, e.g., a co-expression network for gene
expression data [21], a community detection algorithm
is then used to decompose the network nodes into dis-
tinct groups and, finally, gene set testing is performed
relative to each community or all communities. If the net-
work communities are treated like gene clusters, the same
information theoretic or contingency table-based meth-
ods employed for cluster-based enrichment can be used
to calculate the association between gene sets and net-
work communities. Approaches have also been developed
that directly leverage the network structure to test for the
association between gene sets and single network nodes
[22] or groups of nodes [23]. Similar to cluster-based
approaches, gene set enrichment of networks is highly
dependent on the method used to build the network from
genomic data and algorithms employed for community
detection.
Methods have also been developed to test the associ-

ation between gene sets and latent variables computed
from genomic data sets via techniques such as princi-
pal component analysis (PCA) or independent compo-
nent analysis (ICA). Most of these methods test for the
association with just a single latent variable and employ
an anti-conservative contingency-table based test on a
dichotomized version of the loadings for the latent vari-
able [24-26]. An exception is our recently developed prin-
cipal component gene set enrichment (PCGSE) method
[27] that performs competitive gene set testing relative
to each PC using a statistical test that adjusts for corre-
lation among gene set members. Similar to single cluster
gene set testing methods, methods that perform gene set
testing relative to a single latent variable can only pro-
vide an interpretation for a portion of a genomic data

set. To test for the association between gene sets and a
collection of latent variables representative of the entire
data set, matrix correlation methods [28,29] have been
employed, however, such methods are dependent on the
number of latent variables included in the test and can
only be used for self-contained gene set testing [30] (Q2 in
the terminology of Tian et al. [31]).
Effective methods do not currently exist for unsuper-

vised gene set testing against a competitive null hypothesis
that are independent of specific cluster analysis or net-
work analysis approaches. To address this shortcoming,
we have developed spectral gene set enrichment (SGSE),
an approach for unsupervised competitive testing of the
association between gene sets and empirical data sources
independent of cluster or network analysis. The SGSE
method first computes the statistical association between
gene sets and principal components (PCs) using our prin-
cipal component gene set enrichment (PCGSE) method.
The overall statistical association between each gene set
and the spectral structure of the data is then computed
by combining the PC-level p-values using the weighted
Z-method with weights set to the PC variance scaled
by lower-tailed p-value computed for the PC variance
according to the Tracy-Widom distribution. Although
described in the context of gene sets and genomic data,
the SGSE method can be used to compute the statisti-
cal association between any collection of variable groups
and the spectral structure of any empirical data set. To
facilitate use of the SGSE method by other researchers,
we have included an implementation of the algorithm in
the PCGSE R package, which is available from the CRAN
repository. Using simulated gene expression data and sim-
ulated gene sets, we show that the SGSE method can
accurately recover known spectral features from noisy
data, features that are undetectable using cluster-based
approaches. To illustrate the utility of our method on real
genomic data, we compare the performance of the SGSE
method and a cluster-based technique on testing the asso-
ciation between MSigDB gene sets and the spectra of two
cancer microarray gene expression data sets.

Methods
SGSE inputs
Similar to our principal component gene set enrichment
(PCGSE) method [27], the SGSE method takes as input
both an n × p genomic data matrix X quantifying p
genomic variables under n experimental conditions and
an f ×p binary annotationmatrixA that specifies the asso-
ciation between the p genomic variables and f functional
categories.
The genomic data held in X, e.g., mRNA expres-

sion levels, will be modeled as a sample of n indepen-
dent observations from a p-dimensional random vector
x. It is assumed that any desired transformations on
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X have been performed and that missing values have
been imputed or removed. Although the SGSE method
is robust to departures from multivariate normality, as
discussed in Section “PC statistical significance” below,
it will be assumed that x ∼ MVN(μ,�) with correla-
tion matrix P. This distributional assumption is usually
well justified since sources of genomic data, especially
gene expression data, are typically well approximated
by a multivariate normal distribution after appropriate
transformations.
The rows of A represent f biological categories, e.g.,

KEGG pathways or GO categories, and the elements ai,j
hold indicator variables whose value depends on whether
an annotation exists between the function i and genomic
variable j.

SGSE algorithm
Enrichment of the gene sets defined by A relative to
the spectra of X is performed using the following steps,
which are explained in detail in sections “PCA for SGSE”
thru “Combined significance of PCGSE p-values” below.

1. Perform PCA on X.
2. Determine q, the number of PCs used to represent

the spectra of X.
3. For all q PCs, use the PCGSE method to compute the

statistical significance of the association between
each PC and each of the f gene sets defined by A
according to a competitive null hypothesis.

4. Compute the statistical significance of the
association between each of the f gene sets and the
spectra of X using the weighted Z-method on the q
PCGSE p-values with weights based on the PC
variances optionally scaled according to PC statistical
significance.

PCA for SGSE
Because PCs are not invariant under scaling of the data
[28], the PCA solution for SGSE is computed on a mean
centered and standardized version ofX, X̃. The PC loading
vectors and variances of X̃ are thus the eigenvectors and
eigenvalues of:

S = 1
n − 1

X̃T X̃ (1)

The spectral decomposition of S is defined as:

S =
rX̃∑
i=1

λivivTi (2)

where rX̃ is the rank of X̃, λi is the ith eigenvalue of S and
the variance of the ith PC of X̃, vi is the ith eigenvector of S
and the loadings for the ith PC of X̃ and X̃vi is the ith PC.
It is assumed that the eigenvalues are sorted in decreasing

order: λ1 ≥ λ2 ≥ . . . ≥ λrX̃ . Because x ∼ MVN, (n − 1)S
is approximately Wishart distributed:

(n − 1)S = X̃TX̃ ∼ W (n,P) (3)

Similar to PCGSE, the PCA solution for SGSE is real-
ized via the singular value decomposition (SVD) of a,
X̃ = UEVT , where the columns of V represent the PC
loading vectors, the entries in the diagonal matrix E are
proportional to the square roots of the PC variances and
the columns of UE are the PCs.

PC statistical significance
Random matrix theory (RMT) methods provide useful
distributional results for the bulk and extreme eigennval-
ues of matrices with Wishart distributions [32,33]. As
outlined by Johnstone [32], the principal eigenvalue of
a sample covariance matrix with a white Wishart dis-
tribution, where white implies that � = I, tends to a
distribution described by a Tracy-Widom law of order 1
[34]. Specifically, if n, p → ∞, n/p → η ≥ 1, then the
distribution of the rescaled principal eigenvalue:

λ1 − μ( p, n)

σ ( p, n)
(4)

tends to a Tracy-Widom law of order 1, where μ(p, n) =
(
√
n−1+√p)2

n and σ( p, n) =
√
n−1+√p

n

(
1√
n−1 + 1√p

)1/3
.

For p > n, the Tracy-Widom distribution still holds
with p and n simply reversed in the μ( p, n) and σ( p, n)

parameter definitions. Although an asymptotic result, this
distribution was found to hold well even for p and n val-
ues as small as p = 20 and n = 5 [32]. It also holds well
even when the underlying distribution of the elements of
X̃ is not normal [35].
In cases where � has q variances greater than 1, i.e.,

a spiked covariance model, Johnstone [32] demonstrated
that this distribution approximates the distribution of the
(q + 1)th eigenvalue but with slightly heavier tails. This
result can therefore be used to compute a conservative sta-
tistical significance for all of the PCs of X̃ based on the
associated eigenvalues under a null hypothesis of uncorre-
lated MVN data (e.g., use of PCA for population genetics
[36]). Specifically, the statistical significance of PC i can be
determined by first computing aTracy-Widom distributed
statistic, twi, for the eigenvalue, λi, associated with the PC
using equation 4:

twi = λi − μ(p − i + 1, n)

σ (p − i + 1, n)
(5)

Under the H0 that the data is a sample from a MVN
distribution with no pair-wise correlation among the indi-
vidual variables, the p-value for PC i is then computed as
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the probability of a Tracy-Widom law of order 1 statistic
more extreme than twi:

p-valuePCi = 1 − FTW(twi) (6)

where FTW () is the cumulative distribution function of a
Tracy-Widom law of order 1 random variable. This prob-
ability can be computed using either numerical lookup
tables such as those supported by the RMTstat R package
or via the Gamma approximation to theTracy-Widom dis-
tribution detailed in Chiani [37]. The SGSE method cur-
rently uses the Gamma approximation for more accurate
coverage of the tails of the distribution.

Number of PCs used to represent data
The SGSEmethod supports three options for determining
q, the number of PCs used to represent the spectra of X:

1. All PCs with non-zero variance:
q = maxi λi > 0 = rX̃

2. All statistically significant PCs at a specific α level
where statistical significance of a given PC i is
determined according (6).

3. A specified number, q∗, with the constraint that q∗
cannot be greater than the number of PCs with non-
zero variance: q = q∗, s.t. q∗ ≤ rX̃. If specified, q

∗ will
typically be set to a small number, e.g., 1 or 2, to
minimize computational cost of the SGSE algorithm.

PCGSE for SGSE
Our PCGSEmethod [27] is used to compute the statistical
significance of the association between each of the f gene
sets defined in A and each of the first q PCs of X̃ where
q is determined using one of the three methods detailed
in Section “Number of PCs used to represent data” above.
Let the p-value computed via PCGSE for PC i and gene set
j be represented using the notation p-valuePCi,gsj .
Although any supported PCGSE options can be used

with SGSE, by default, the SGSE method executes PCGSE
using the Fisher-transformed Pearson correlation coeffi-
cient between each variable and each PC as the gene-level
test statistic and the correlation-adjusted standardized
mean difference statistic as the gene set test statistic with
statistical significance of the gene set test statistic under
a competitive H0 computed using a two-sided t-test as
detailed in Frost et al. [27].

Combined significance of PCGSE p-values
For each of the f gene sets, the p-values computed via
PCGSE for the q selected PCs of X̃ are combined using
the weighted Z-method, a generalization of the untrans-
formed Z-transform test [38,39]. The weighted Z-method
combines Z-statistics generated for each of multiple inde-
pendent p-values using weights specific to each p-value.
This approach for combining p-values is justified for SGSE

under the assumption ofmultivariate normality for xmak-
ing both the uncorrelated PCs of X̃, and the p-values gen-
erated by PCGSE with respect to those PCs, independent.
If x is significantly non-Gaussian, then the PC-specific
p-values will be dependent and techniques such as Kost’s
method [40] or a generalized version of Fisher’s method
[41] must be employed instead of the weighted Z-method.
In the context of SGSE, a weighed Z-statistic is generated
for each of the f gene sets as follows:

Zgsj =
∑q

i=1 wi�−1
(
1 − p-valuePCi,gsj

)
√∑q

i=1 w
2
i

(7)

where wi is a weight specific to PC i of X̃ and �−1() is the
inverse standard normal CDF. Two options are supported
for determining the PC-specific weights, wi:

1. The weight is set to the variance of each PC: wi = λi
2. The weight is set to the variance of each PC scaled by

the lower-tailed p-value computed for the PC
variance according to the Tracy-Widom distribution
as detailed in Section “PC statistical significance”:
wi = (1 − p-valuePCi)λi = FTW(twi)λi

The overall p-value representing the statistical signifi-
cance of the association between gene set j and the spectra
of X is then computed using a one-sided z-test on Zgsi :

p-valuegsj = 1 − �
(
Zgsj

)
(8)

SGSE evaluation
Benchmark cluster-based gene set testingmethod
To support comparative evaluation of the SGSE method,
we implemented a cluster-based gene set testing method
that is representative of a large number of existing clus-
ter and network-based gene set testing methods. Our
benchmark cluster-based method computes the statisti-
cal significance of the association between gene sets and a
data set as follows:

1. Cluster the p genomic variables in X̃ using k-means
clustering with the Hartigan and Wong algorithm
[42], 5 restarts and k set according to the global
maximum of the gap statistic [19] as computed using
the clusGap() function in the cluster R package [43]
with the number of bootstrap resamples defaulting to
100.

2. Compute the statistical significance of the
association between each of the f gene sets defined in
A and the k-means clustering using Pearson’s χ2 test
of independence on a 2 × k contingency table whose
first row holds the counts of gene set members in
each of the k clusters and whose second row holds
the total size of each of the k clusters.
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Evaluation using simulated gene sets and simulated data
To explore the type I and type II error rates for the
SGSE method and benchmark cluster-based method, a
set of simulation studies were performed. In each simula-
tion study, the SGSE method, using both choices for PC
weights, and the cluster-based method were used to com-
pute the statistical association between 10 disjoint gene
sets, each of size 20, and the spectra of 1000 simulated
gene expression datasets each comprised by 50 indepen-
dent observations of a 200 dimension random vector sim-
ulated according to a multivariate normal distribution, ∼
MVN(0,�). The structure of � varied between the simu-
lation studies as follows:

1. Test of type I error rate: � = I, reflecting a true H0.
2. Test of power using single factor design: In this case,

� was generated as a single factor model with
� = λ1α1α

T
1 + λdI , where λ1 = 4, λd = 1 and α1 is a

200-dimensional vector with all elements equal to 0
except for the first 20 which were set to

√
.05. This

population covariance design represents a true
association between the first gene set and the first PC.

3. Test of power using two factor design: In this case, �
was generated as a two-factor model with
� = λ1α1α

T
1 + λ2α2α2T + λdI , where λ1 = 4, λ2 =

3, λd = 1, α1 is a 200-dimensional vector with all
elements equal to 0 except for the first 10 which were
set to

√
.1 and α2 is a 200-dimensional vector with all

elements equal to 0 except for the second 10 which
were set to

√
.1 . This population covariance design

represents a true association between the first gene
set and the first and second PCs with half of the gene
set associated with PC 1 and half associated with
PC 2.

For all three simulation studies, the SGSE method was
executed on the 1000 simulated datasets using default
settings for PCGSE, as specified in Section “PCGSE
for SGSE”, and both weighting methods outlined in
Section “Combined significance of PCGSE p-values”. For
both the single factor and two-factor simulation designs,
the gap statistic method failed to predict any cluster struc-
ture, i.e., only a single cluster was predicted. To overcome
this issue and prevent a 0 power result for the cluster-
based method, the number of clusters used with the
benchmark cluster-based method was fixed at k=2 for all
simulation cases.

Evaluation usingMSigDB C2 v4.0 gene sets and Armstrong
et al. leukemia gene expression data
The SGSE method and the benchmark cluster-based
method were used to compute the statistical association
between the MSigDB C2 v4.0 gene sets and the spec-
tra of the leukemia gene expression data [44] used in the

2005 GSEA paper [9]. The MSigDB C2 v4.0 gene sets
and collapsed leukemia gene expression data were both
downloaded from the MSigDB repository. With a mini-
mum gene set size of 15 and maximum gene set size of
200, 3,076 gene sets out of the original 4,722 were used
in the analysis. The SGSE method was executed on the
leukemia gene expression data using all PCs with non-zero
eigenvalues, PCGSE was called with default settings as
specified in Section “PCGSE for SGSE”, and both weight-
ing methods outlined in Section “Combined significance
of PCGSE p-values” were employed. The benchmark
cluster-based enrichment method was executed as out-
lined in Section “Benchmark cluster-based gene set
testing method” (k=10 was selected as optimal by the gap
statistic test). The enrichment of theMSigDB C2 gene sets
was also computed relative to the acute myeloid leukemia
(AML) versus acute lymphoblastic leukemia (ALL)
phenotype using the competitive enrichment method
CAMERA [12] with default settings. To quantify how
well SGSE and the benchmark cluster-based method were
able to capture the known strong association between
AML/ALL status and the second PC in the data (see
analysis in Frost et al. [27]), the Spearman correlation
coefficient was calculated between unsupervised enrich-
ment p-values and phenotype enrichment p-values for
all MSigDB C2 gene sets. For gene sets with pheno-
type enrichment p-values less than 0.05, contingency table
statistics were also computed measuring how well SGSE
and the cluster-based enrichment method were able to
identifyMSigDBC2 gene sets significantly associated with
the AML/ALL phenotype.

Evaluation using Rosenwald et al. DLBCL gene expression
data andMSigDB C2 v4.0 gene sets
The SGSE method and the benchmark cluster-based
method were also used to compute the statistical asso-
ciation between the MSigDB C2 v4.0 gene sets and the
spectra of the Rosenwald et al. [45] diffuse large B-cell lym-
phoma (DLBCL) gene expression data. The Rosenwald
et al. data set consists of gene expression measurements
for 240 patients with DLBCL made using the Lymphochip
microarray on 7,399 genes. Microarray data and clini-
cal covariates from the Rosenwald et al. study were both
downloaded from the paper’s supplemental information
web site. To support spectral and phenotype enrichment
analysis, the subset of the MSigDB C2 v4.0 gene sets
whose members were measured in the Rosenwald et al.
data was generated by mapping each of the Lymphochip
probes, via Genbank accession numbers, to Entrez gene
identifiers and MSigDB C2 v4.0 gene sets. Prior to execu-
tion of SGSE and the benchmark cluster-basedmethod, all
censored subjects were removed and missing values in the
Rosenwald et al. data were imputed using k-nearest neigh-
bor imputation using the impute.knn() function from the
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R impute package with default settings [46]. With a min-
imum gene set size of 15 and maximum gene set size
of 200, 3,106 gene sets out of the original 4,722 were
used in the analysis. The SGSE method was executed
on the DLBCL gene expression data using all PCs with
non-zero eigenvalues, PCGSE was called with default set-
tings as specified in Section “PCGSE for SGSE”, and
both weighting methods outlined in Section “Combined
significance of PCGSE p-values” were employed. The
benchmark cluster-based enrichment method was exe-
cuted as outlined in Section “Benchmark cluster-based
gene set testing method” (k=10 was selected as optimal by
the gap statistic test). The enrichment of the MSigDB C2
gene sets was also computed relative to the log of survival
time with the competitive enrichment method CAMERA
[12] using, as a gene-level test statistic, the z-transformed
t-statistic associated with the estimated coefficient from
a linear model between gene expression and log survival
time. To quantify how well SGSE and the benchmark
cluster-based method were able to capture the associa-
tion between gene set expression and survival time, the
Spearman correlation coefficient was computed between
unsupervised enrichment p-values and phenotype enrich-
ment p-values for all MSigDB C2 gene sets. For gene sets
with phenotype enrichment p-values less than 0.05, con-
tingency table statistics were computed measuring how
well SGSE and the cluster-based enrichment method were
able to identify MSigDB C2 gene sets significantly associ-
ated with log survival time.

Results and discussion
Simulation example
The three simulation studies detailed in Section “Evaluation
using simulated gene sets and simulated data” were used
to evaluate the type I and type II error rates for the
SGSE method (using both weighting options) and the
benchmark cluster-based approach. Figure 1 illustrates
the results for all three simulation models.

Type I error rate simulation
Because the data was generated according to an identity
population covariance matrix, this simulation model is
consistent with the H0 of no association between any of
the gene sets and any of the sample PCs. As seen in the
quantile-quantile plot of unsupervised gene set enrich-
ment p-values from the simulation study, Figure 1c), the
results for all three methods are consistent with this null.
At an α = 0.05 level, the type I error rate across all 1000
simulated data sets for SGSE with variance weights was
0.02, for SGSE with Tracy-Widom scaled variance weights
the type I error rate was 0.034 and for the cluster-based
method the type I error rate was 0.031. These results
demonstrate that all evaluated methods provide similar,
and slightly conservative, control of the type I error rate.

Single-factor power simulation
According to the population covariance matrix used in
the single-factor simulation study, only the first gene set
should be significantly associated with the first PC. As
seen in the Figure 1, plot d), this association is easily
detected via the PCGSE method. At an α = 0.05 level, the
empirical power to detect the association between the first
gene set and the spectra of the simulated data for SGSE
with variance weights was 0.15, for SGSE with Tracy-
Widom scaled variance weights the empirical power was
0.95 and for the cluster-basedmethod the empirical power
was 0.92. These results demonstrate that the power of the
SGSE method to detect an association in the single fac-
tor case is strongly dependent on the choice of weights
used to combine the PCGSE-generated p-values in the
weighted Z-method, as detailed in Section “Combined
significance of PCGSE p-values”. The impact of PCGSE
p-value weights for the simulation example can be seen
in Figure 1 plots b), e) and h). These plots show both the
PC variance weights for the simulated datasets as well as
weights calculated by scaling the PC variance using the
lower-tailed p-value computed using the Tracy-Widom
distribution for the PC variance. This scaled PC variance
weighting results in weights being very close to the stan-
dard PC variance weights if the PC variance is highly
significant according to the distribution of the principal
eigenvalue of a matrix with a white Wishart distribution.
As the PC variance becomes less significant, the scal-
ing coefficient decreases lowering the effective weight for
the PCGSE-computed p-value associated with that PC.
Although the cluster-based method had nearly the same
power as the SGSE method with Tracy-Widom scaled
variance weights, it is important to note that the gap
statistic only identified a single cluster in the data in this
case, making the cluster-based χ2 test for gene set enrich-
ment meaningless if a data-driven approach is taken to
determine the number of clusters.

Two-factor power simulation
According to the population covariance matrix used in
the two-factor simulation study, the first gene set should
be significantly associated with both the first and second
PCs. As seen in the Figure 1, plot g), this association is
detected via the PCGSE method but the signal is much
less strong at the PC level than for the single-factor model.
It is only by combining the measured association across
all PCs that the SGSE method is able to obtain decent
power in such a scenario. At an α = 0.05 level, the empir-
ical power to detect the association between the first gene
set and the spectra of the simulated data for SGSE with
variance weights was 0.31, for SGSE with Tracy-Widom
scaled variance weights the empirical power was 0.71 and
for the cluster-based method the empirical power was
0.52. These results again demonstrate that the power of
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Figure 1 Simulation results. Results for the simulation studies detailed in Section “Evaluation using simulated gene sets and simulated data”. For
all plots, error bars represent ±1SE for the mean value over all 1000 simulated datasets. a)-c) Results for the type I error simulation study based on
MVN data generated with an identity population covariance matrix. This model is consistent with H0. d)-f) Results for the power simulation study
based on MVN data generated according to a single-factor population covariance matrix. Under this model, an association exists between the first
gene set and PC 1. g)-i) Results for the power simulation study based on MVN data generated according to a two-factor population covariance
matrix. Under this model, an association exists between the first gene set and PCs 1 and 2. a), d) and g)Mean p-values computed using the PCGSE
method for the first simulated gene set relative to the first 5 PCs. b), e) and h)Mean weights used by the SGSE method to combine the
PCGSE-computed p-values for each gene set relative to the first 5 PCs. PC variance weights are shown as round points connected by a solid line. PC
variance scaled by the lower-tailed p-value computed using the Tracy-Widom distribution for the PC variance is shown using square points
connected by a dashed line. c), f) and i) Quantile-quantile plot of the p-values computed using the SGSE method, with both PC variance weights
(Var.) or weights defined by the PC variance scaled by the lower-tailed Tracy-Widom p-value of the PC variance (TW*Var.), or the benchmark method
that uses a Chi-squared test between cluster membership and gene set membership (Chisq).

the SGSE method to detect an unsupervised association
is strongly dependent on the choice of weights used to
combine the PCGSE-generated p-values in the weighted
Z-method. The lower power achieved by the cluster-based
method relative to the SGSE method is also noteworthy
and is due, in this case, to the fact that portions of the
first gene set are associated with both the first and sec-
ond latent factors. This population covariance design has
the effect of generating two separate correlated blocks of
variables for the members of this gene set and variable
clustering will therefore tend to separate them into dis-
tinct clusters, muting the ability of a χ2 test to identify

an association between cluster membership and gene set
membership. Similar to the single-factor simulation, the
gap statistic failed to identify more than a single cluster in
the datasets simulated according to the two-factor model.

Leukemia gene expression example
The Armstrong et al. [44] leukemia gene expression
dataset and MSigDB C2 v4.0 gene sets were selected for
SGSE analysis because of the known association between
AML/ALL status and the spectra of the gene expression
data, as illustrated in Frost et al. [27], the easy accessibil-
ity of the data and gene sets from the MSigDB repository
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and the common use of both the gene expression data and
curated gene sets in the gene set enrichment literature
(e.g., Subramanian et al. [9]).
Figure 2 shows the association between phenotype and

unsupervised gene set enrichment p-values computed
using both the benchmark cluster-based method and the
SGSE method for the MSigDB C2 v4.0 gene sets, the
AML versus ALL phenotype and the Armstrong et al.
leukemia gene expression data. Although the true unsu-
pervised enrichment status of the MSigDB C2 v4.0 gene
sets relative to the variance structure of the Armstrong
et al. [44] gene expression data is unknown, the phe-
notype enrichment results can be used as a proxy for
the true unsupervised gene set enrichment based on
the strong association between PC 2 and AML versus
ALL status [27] as well as the recent finding by Gorlov
et al. [47] that the genes with a large expression variance
among cancer cases have a very high likelihood of hav-
ing a known role in tumor-genesis. As indicated by the
correlation between phenotype enrichment and unsuper-
vised gene set enrichment p-values, the SGSEmethod was
able to capture a greater proportion of the AML versus
ALL enrichment signal than the benchmark cluster-based
method, irrespective of the method used to weight the
PC-specific gene set enrichment p-values, with the best
performance obtained when PC statistical significance
was used to compute the SGSE weights. The benefits of
the SGSE method relative to cluster-based enrichment
are most clearly visible when considering identification of
AML/ALL-associated gene sets via unsupervised enrich-
ment using a phenotype enrichment threshold of α = 0.1.
In this case, anti-conservative nature of the χ2 test used in
the cluster-based method leads to a high type I error rate

and a very low positive predictive value (PPV) of 0.14 as
displayed in plot (a), whereas the SGSE method has a PPV
0.39 when using PC variance weights as displayed in plot
(b) and a PPV of 0.53 when using as weights the PC vari-
ance scaled by the lower-tailed Tracy-Widom p-value for
the variance as shown in plot (c).
The χ2 test is anti-conservative in this case because it

assumes the contingency table is populated via random
sampling from a common distribution. In this case, how-
ever, the contingency table is populated using genomic
variables whose values are not in fact independent. Thus,
the χ2 test is using a grossly inflated sample size. Simi-
lar issues plague other uses of gene sampling in gene set
testing, see Goeman et al. [30] for a discussion. Additional
file 1 contains the top ten gene sets returned by each of
these methods for the Armstrong et al. gene expression
data. These lists clearly highlight the performance differ-
ence between SGSE and the cluster-based χ2 test. While
SGSE returns a set of cancer related gene sets in the top
ten results, the χ2 test returns gene sets without a clear
cancer relationship and with very extreme p-values.
SGSE analysis of the MSigDB C2 v4.0 gene sets and

Armstrong et al. [44] leukemia gene expression data
illustrates the biological motivation for spectral gene set
enrichment, shows the clear superiority of the SGSE
approach relative to standard cluster-based gene set tests
and demonstrates the importance of PC-specific p-value
weights that take into account the statistical significance
of each PC.

DLBCL gene expression example
The Rosenwald et al. [45] DLBCL gene expression dataset
is another good example of a clear association between the

Figure 2 Leukemia gene expression results. Scatter plot showing the association between phenotype gene set enrichment p-values and
unsupervised gene set enrichment p-values computed using the benchmark cluster-based method (plot a)) and SGSE (plots b) and c)) for the
Armstrong et al. [44] leukemia gene expression data, AML/ALL phenotype, and MSigDB C2 v4.0 gene sets. Phenotype enrichment, unsupervised
cluster-based enrichment and spectral gene set enrichment p-values were computed as outlined in Section “Evaluation using MSigDB C2 v4.0 gene
sets and Armstrong et al. leukemia gene expression data”. Displayed in each plot is the Spearman correlation coefficient between phenotype and
unsupervised gene set enrichment p-values and the positive predictive value of unsupervised gene set enrichment for identifying gene sets that are
significantly enriched relative to the phenotype at an α = 0.1 (shown by dotted lines). The results from the two different SGSE weighting methods
outlined in Section “Combined significance of PCGSE p-values” are shown in plots b) and c) with b) plotting SGSE p-values generated using PC
variance weighting and c) plotting SGSE p-values generated using weights defined by the PC variance scaled by the lower-tailed Tracy-Widom
p-value for the variance.
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variance structure of gene expression data and an inter-
esting clinical phenotype, in this case log survival time.
Similar to the Armstrong et al. leukemia gene expression
data, the Rosenwald et al. DBLCL gene expression data
is easily accessible and has been widely reanalyzed in the
genomics literature, factors that will support interpreta-
tion and replication of the reported SGSE results by other
researchers.
Figure 3 shows the association between phenotype

and unsupervised gene set enrichment p-values for the
MSigDB C2 v4.0 gene sets, log survival time and the
spectra of the Rosenwald et al. DLBCL gene expression
data. Although the true enrichment status of the MSigDB
C2 v4.0 gene sets relative to the variance structure of
the Rosenwald et al. gene expression data is unknown,
the phenotype enrichment results can again be used as
a proxy for the true spectral gene set enrichment based
on association between expression variance and cancer-
related genes [47]. Although the association between
SGSE and cluster-based p-values and phenotype p-values
was lower for the Rosenwald et al. DLBCL gene expression
data than for the Armstrong et al. leukemia gene expres-
sion data, the SGSE method was still able to capture an
appreciably greater proportion of the survival time enrich-
ment signal as compared to the benchmark cluster-based
method, irrespective of the method used to weight the
PC-specific gene set enrichment p-values. Similar to the
findings for the leukemia gene expression data, incorpo-
rating the PC statistical significance in the SGSE weights
improved the Spearman correlation between pheno-
type enrichment p-values and SGSE p-values for the
Rosenwald et al. data. The superior performance of the
SGSE method relative to the benchmark cluster-based

method was again most apparent when considering iden-
tification of survival time-associated gene sets via unsu-
pervised enrichment using just a phenotype enrichment
threshold of α = 0.1. In this case, the choice of SGSE
weighting method also had a significant impact with a
positive predictive value (PPV) of 0.079 for cluster-based
enrichment as displayed in plot (a), a PPV of 0.17 for SGSE
when using PC variance weights as displayed in plot (b)
and a PPV of 0.3 when using as weights the PC variance
scaled by the lower-tailed Tracy-Widom p-value for the
variance as shown in plot (c).
Additional file 1 contains the top ten gene sets returned

by each of these methods for the Rosenwald et al. gene
expression data. Similar to the top gene set lists for the
leukemia gene expression data set, these lists highlight
the anti-conservative nature of the χ2 test on this dataset.
The fact that the SGSE method with Tracy-Widom scaled
variance weights was the only method to includes a gene
set directly related to DLBCL in the top ten lends further
qualitative support to the efficacy of this approach.

Conclusions
Almost universally, gene set testing is performed in a
supervised context to measure the association between
functional groups of genes and a clinical phenotype. Many
important examples exist, however, where a gene set-
based interpretation of genomic data is desired in the
absence of a phenotype variable. Although techniques
have been developed for unsupervised gene set testing,
they predominantly compute enrichment relative to a
categorical variable defined by disjoint clusters of the
genomic variables. Because such cluster-based methods
often use anti-conservative contingency table-based tests

Figure 3 DLBCL gene expression results. Scatter plot showing the association between phenotype gene set enrichment p-values and
unsupervised gene set enrichment p-values computed using the benchmark cluster-based method (plot a)) and SGSE (plots b) and c)) for the
Rosenwald et al. [45] DLBCL gene expression data, log survival time phenotype, and MSigDB C2 v4.0 gene sets. Phenotype enrichment,
unsupervised cluster-based enrichment and spectral gene set enrichment p-values were computed as outlined in Section “Evaluation using
Rosenwald et al. DLBCL gene expression data and MSigDB C2 v4.0 gene sets”. Displayed in each plot is the Spearman correlation coefficient
between phenotype and unsupervised gene set enrichment p-values and the positive predictive value of unsupervised gene set enrichment for
identifying gene sets that are significantly enriched relative to the phenotype at an α = 0.1 (shown by dotted lines). The results from the two
different SGSE weighting methods outlined in Section “Combined significance of PCGSE p-values” are shown in plots b) and c) with b) plotting
SGSE p-values generated using PC variance weighting and c) plotting SGSE p-values generated using weights defined by the PC variance scaled by
the lower-tailed Tracy-Widom p-value for the variance.
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and have performance that is strongly dependent on the
clustering algorithm and number of clusters, they are
more useful for clustering evaluation than for gene set-
based interpretation of genomic data. To address the lack
of effective statistical methods for unsupervised compet-
itive gene set testing, we have developed spectral gene
set enrichment (SGSE), available in the PCGSE R package
from CRAN. The SGSE method first computes the sta-
tistical association between gene sets and principal com-
ponents (PCs) using our principal component gene set
enrichment (PCGSE) method. The overall statistical asso-
ciation between each gene set and the spectral structure
of the data is then computed by combining the PC-level
p-values using the weighted Z-method with weights set to
the PC variance scaled by lower-tailed p-values from the
Tracy-Widom distribution of the eigenvalue associated
with each PC. On both simulated gene sets with simulated
data and on curated gene sets with real gene expres-
sion data, the SGSE method has been shown to provide
superior estimates of unsupervised gene set enrichment
relative to standard cluster-based approaches.

Availability of supporting data
The MSigDB C2 v4.0 gene sets can be downloaded from
http://www.broadinstitute.org/gsea/msigdb/collections.jsp.
The Armstrong et al. [44] leukemia gene expression
data can be downloaded from http://www.broadinstitute.
org/gsea/datasets.jsp. The Rosenwald et al. [45] DLBCL
gene expression data can be downloaded from http://
llmpp.nih.gov/DLBCL/. An implementation of the SGSE
algorithm is available in the PCGSE R package (version ≥
0.2, http://cran.r-project.org/web/packages/PCGSE/index.
html). Due to the dependency on the Bioconductor pack-
age safe, it is recommended that PCGSE be installed using
the biocLite() function. At the R prompt, enter:

source("http://bioconductor.org/biocLite.R")

biocLite("PCGSE")

Additional file

Additional file 1: Supplemental results for leukemia and DLBCL gene
expression datasets. Contains tables listing the top ten most significantly
enriched MSigDB C2 v4.0 gene sets returned by SGSE and the cluster-based
χ2 test on the leukemia and DLBCL gene expression datasets.
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