1,613 research outputs found

    Appraisal of Cardiovascular Risk Factors, Biomarkers, and Ocular Imaging in Cardiovascular Risk Prediction

    Get PDF
    Cardiovascular disease remains a leading cause of death worldwide despite the use of available cardiovascular disease risk prediction tools. Identification of high-risk individuals via risk stratification and screening at sub-clinical stages, which may be offered by ocular screening, is important to prevent major adverse cardiac events. Retinal microvasculature has been widely researched for potential application in both diabetes and cardiovascular disease risk prediction. However, the conjunctival microvasculature as a tool for cardiovascular disease risk prediction remains largely unexplored. The purpose of this review is to evaluate the current cardiovascular risk assessment methods, identifying gaps in the literature that imaging of the ocular microcirculation may have the potential to fill. This review also explores the themes of machine learning, risk scores, biomarkers, medical imaging, and clinical risk factors. Cardiovascular risk classification varies based on the population assessed, the risk factors included, and the assessment methods. A more tailored, standardised and feasible approach to cardiovascular risk prediction that utilises technological and medical imaging advances, which may be offered by ocular imaging, is required to support cardiovascular disease prevention strategies and clinical guidelines

    Blood Sugar, Your Pancreas, and Unicorns: The Development of Health Education Materials for Youth With Prediabetes

    Get PDF
    Background. The obesity epidemic has led to an increase in prediabetes in youth, causing a serious public health concern. Education on diabetes risk and initiation of lifestyle change are the primary treatment modalities. There are few existing age-appropriate health education tools to address diabetes prevention for high-risk youth. Aim. To develop an age-appropriate health education tool(s) to help youth better understand type 2 diabetes risk factors and the reversibility of risk. Method. Health education tool development took place in five phases: exploration, design, analysis, refinement, and process evaluation. Results. The project resulted in (1) booklet designed to increase knowledge of risk, (2) meme generator that mirrors the booklet graphics and allows youth to create their own meme based on their pancreas’ current mood, (3) environmental posters for clinic, and (4) brief self-assessment that acts as a conversation starter for the health educators. Conclusion. Patients reported high likability and satisfaction with the health education tools, with the majority of patients giving the materials an “A” rating. The process evaluation indicated a high level of fidelity and related measures regarding how the health education tools were intended to be used and how they were actually used in the clinic setting

    Immunologic activation of human syncytiotrophoblast by Plasmodium falciparum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria during pregnancy is characterized by the sequestration of malaria-infected red blood cells (iRBC) in the intervillous spaces of the placenta, often accompanied by the infiltration of maternal mononuclear cells, causing substantial maternal and foetal/infant morbidity. The iRBC bind to receptors expressed by the syncytiotrophoblast (ST). How ST responds to this interaction remains poorly understood. Because it is known that ST is immunoactive and can respond to infectious agents, the consequences of this ST-iRBC interaction should be investigated.</p> <p>Methods</p> <p>An in vitro system was used to assess the biochemical and immunological changes induced in ST by ST-adherent iRBCs. Changes in ST mitogen-activated protein kinase (MAPK) activation were assessed by immunoblotting and mRNA expression levels of selected cytokine and chemokines in primary ST bound by iRBC were determined using real-time, reverse transcription PCR. In addition, secreted cytokine and chemokine proteins were assayed by standard ELISA, and chemotaxis of PBMC was assessed using a two-chamber assay system.</p> <p>Results</p> <p>Following iRBC/ST interaction, ST C-Jun N-terminal kinase 1 (JNK1) was activated and modest increases in the mRNA expression of TGF-β and IL-8/CXCL8 were observed. In addition, this interaction increased secretion of MIF and MIP-1α/CCL3 by ST and induced migration of PBMC towards iRBC-stimulated ST.</p> <p>Conclusion</p> <p>Results from this study provide the first evidence that ST participates in shaping the local immunological milieu and in the recruitment of maternal immune cells to the maternal blood space during placental malaria infection.</p

    Swimming kinematics and efficiency of entangled North Atlantic right whales

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Endangered Species Research 32 (2017): 1-17, doi:10.3354/esr00781.Marine mammals are streamlined for efficient movement in their relatively viscous fluid environment and are able to alter their kinematics (i.e. fluke stroke frequency, amplitude, or both) in response to changes in force balance. Entanglement in fishing gear adds significant drag and buoyant forces that can impact swimming behaviors across a range of timescales. We deployed biologging tags during the disentanglement of 2 North Atlantic right whales Eubalaena glacialis to (1) examine how their kinematics changed in response to drag and buoyancy from entanglement in fishing gear, and (2) calculate resultant changes in swimming efficiency for one individual. We observed variable responses in dive behavior, but neither whale appeared to exploit added buoyancy to reduce energy expenditure. While some of the observed changes in behavior were individually specific, some swimming kinematics were consistently modulated in response to high drag and buoyancy associated with entangling gear, affecting thrust production. In high drag and buoyancy conditions, fluke strokes were significantly shorter and more variable in shape, and gliding was less frequent. Thrust and efficiency significantly differed among dive phases. Disentanglement reduced thrust coefficients ~4-fold, leading to 1.2 to 1.8-fold lower power (W). Ideal propulsive efficiency was significantly lower when entangled, though we detected no difference in observed propulsive efficiency between the conditions. Similar to carrying heavy objects or changing shoes, we present another condition where animals perceive unique movement constraints over seconds to minutes and develop compensatory strategies, altering their movement accordingly.J.M.v.d.H was supported by a postgraduate scholarship from the Natural Sciences and Engineering Research Council of Canada, the MIT Martin Family for Sustainability Fellowship, the Herrington Fitch Family Foundation, a NOAA Award #NA14OAR4320158 to The Cooperative Institute for the North Atlantic Region, and a WHOI-Duke Fellowship through the WHOI Marine Mammal Center

    Perceptions of Academic Fieldwork Coordinators Regarding the Value of Fieldwork in Emerging Areas of Practice

    Get PDF
    This study investigated the perceptions of academic fieldwork coordinators (AFWCs) regarding emerging areas of practice as fieldwork experiences for entry-level occupational therapy (OT) students. Further, this study explored several aspects of fieldwork experiences in emerging areas of practice on student personal and professional development, academic curriculum, partnering community agencies, and the profession at large. A survey designed through Qualtrics®, an electronic survey system, was sent to 163 AFWCs of fully accredited master’s and doctoral entry-level OT programs. Forty-four participants (27%) completed the 16-question survey. Significance at p \u3c .05 was found in higher levels of Bloom’s taxonomy student performance when compared to traditional areas of practice. Common perceptions found among the AFWCs related to emerging areas of practice fieldwork experiences included: improved student professional and personal skills, increased connections and collaborations across and in health care disciplines, an enhanced ability to define and understand OT. Continued opportunities for fieldwork in emerging areas of practice are essential as the profession contemplates new markets and avenues in a changing health care environment

    Sequence Polymorphism, Segmental Recombination and Toggling Amino Acid Residues within the DBL3X Domain of the VAR2CSA Placental Malaria Antigen

    Get PDF
    Plasmodium falciparum malaria remains one of the world's foremost health problems, primarily in highly endemic regions such as Sub-Saharan Africa, where it is responsible for substantial morbidity, mortality and economic losses. Malaria is a significant cause of severe disease and death in pregnant women and newborns, with pathogenesis being associated with expression of a unique variant of the multidomain Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) called VAR2CSA. Here, we characterize the polymorphism of the DBL3X domain of VAR2CSA and identify regions under selective pressure among placental parasites from women living in endemic western Kenya. In addition to significant levels of polymorphism, our analysis reveals evidence for diversification through intra-segmental recombination and novel mutations that likely contributed to the high number of unique VAR2CSA sequence types identified in this study. Interestingly, we also identified a number of critical residues that may be implicated in immune evasion through switching (or toggling) to alternative amino acids, including an arginine residue within the predicted binding pocket in subdomain III, which was previously implicated in binding to placental CSA. Overall, these findings are important for understanding parasite diversity in pregnant women and will be useful for identifying epitopes and variants of DBL3X to be included in a vaccine against placental malaria

    Assessment of hemodynamic indices of conjunctival microvascular function in patients with coronary microvascular dysfunction

    Get PDF
    Objective: Coronary microvascular dysfunction (CMD) is a cause of ischaemia with non-obstructive coronary arteries (INOCA). It is notoriously underdiagnosed due to the need for invasive microvascular function testing. We hypothesized that systemic microvascular dysfunction could be demonstrated non-invasively in the microcirculation of the bulbar conjunctiva in patients with CMD. Methods: Patients undergoing coronary angiography for the investigation of chest pain or dyspnoea, with physiologically insignificant epicardial disease (fractional flow reserve ≥0.80) were recruited. All patients underwent invasive coronary microvascular function testing. We compared a cohort of patients with evidence of CMD (IMR ≥25 or CFR &lt;2.0); to a group of controls (IMR &lt;25 and CFR ≥2.0). Conjunctival imaging was performed using a previously validated combination of a smartphone and slit-lamp biomicroscope. This technique allows measurement of vessel diameter and other indices of microvascular function by tracking erythrocyte motion. Results: A total of 111 patients were included (43 CMD and 68 controls). There were no differences in baseline demographics, co-morbidities or epicardial coronary disease severity. The mean number of vessel segments analysed per patient was 21.0 ± 12.8 (3.2 ± 3.5 arterioles and 14.8 ± 10.8 venules). In the CMD cohort, significant reductions were observed in axial/cross-sectional velocity, blood flow, wall shear rate and stress. Conclusion: The changes in microvascular function linked to CMD can be observed non-invasively in the bulbar conjunctiva. Conjunctival vascular imaging may have utility as a non-invasive tool to both diagnose CMD and augment conventional cardiovascular risk assessment.</p

    Timing of Moderate Level Prenatal Alcohol Exposure Influences Gene Expression of Sensory Processing Behavior in Rhesus Monkeys

    Get PDF
    Sensory processing disorder, characterized by over- or under-responsivity to non-noxious environmental stimuli, is a common but poorly understood disorder. We examined the role of prenatal alcohol exposure, serotonin transporter gene polymorphic region variation (rh5-HTTLPR), and striatal dopamine (DA) function on behavioral measures of sensory responsivity to repeated non-noxious sensory stimuli in macaque monkeys. Results indicated that early gestation alcohol exposure induced behavioral under-responsivity to environmental stimuli in monkeys carrying the short (s) rh5-HTTLPR allele compared to both early-exposed monkeys homozygous for the long (l) allele and monkeys from middle-to-late exposed pregnancies and controls, regardless of genotype. Moreover, prenatal timing of alcohol exposure altered the relationship between sensory scores and DA D2R availability. In early-exposed monkeys, a positive relationship was shown between sensory scores and DA D2R availability, with low or blunted DA function associated with under-responsive sensory function. The opposite pattern was found for the middle-to-late gestation alcohol-exposed group. These findings raise questions about how the timing of prenatal perturbation and genotype contributes to effects on neural processing and possibly alters neural connections
    corecore