531 research outputs found

    Shortgrass Steppe LTER VI: examining ecosystem persistence and responses to global change, 2010-2014 proposal

    Get PDF
    Includes bibliographical references.The SGS-LTER research site was established in 1980 by researchers at Colorado State University as part of a network of long-term research sites within the US LTER Network, supported by the National Science Foundation. Scientists within the Natural Resource Ecology Lab, Department of Forest and Rangeland Stewardship, Department of Soil and Crop Sciences, and Biology Department at CSU, California State Fullerton, USDA Agricultural Research Service, University of Northern Colorado, and the University of Wyoming, among others, have contributed to our understanding of the structure and functions of the shortgrass steppe and other diverse ecosystems across the network while maintaining a common mission and sharing expertise, data and infrastructure.The Shortgrass Steppe Long-term Ecological Research (SGS-LTER) program focuses on how grassland ecosystems function and persist or change in the face of global change. Our conceptual framework asserts that climate, physiography, grazing, fire and landuse, operating over different spatial and temporal scales, are the dominant determinants of the structure, function, and persistence of the SGS. Using the shortgrass steppe (SGS) ecosystem of the North American Great Plains as a model, we seek to (1) identify the ecological attributes of grasslands that historically have resulted in their persistence and (2) understand these attributes in ways that will allow us to identify area of vulnerability and better forecast the future of grasslands in the face of global change. Given its geographic extent and history, the SGS encapsulates many of the features of a system driven by social-ecological interactions and the vulnerabilities of semiarid grasslands to global change. Our overarching question is: How will structure and function of the SGS respond to expected changes in climate, management, and land-use, and what will be the consequences

    Circulating Markers Reflect Both Anti- and Pro-Atherogenic Drug Effects in ApoE-Deficient Mice

    Get PDF
    Background: Current drug therapy of atherosclerosis is focused on treatment of major risk factors, e.g. hypercholesterolemia while in the future direct disease modification might provide additional benefits. However, development of medicines targeting vascular wall disease is complicated by the lack of reliable biomarkers. In this study, we took a novel approach to identify circulating biomarkers indicative of drug efficacy by reducing the complexity of the in vivo system to the level where neither disease progression nor drug treatment was associated with the changes in plasma cholesterol.Results: ApoE-/- mice were treated with an ACE inhibitor ramipril and HMG-CoA reductase inhibitor simvastatin. Ramipril significantly reduced the size of atherosclerotic plaques in brachiocephalic arteries, however simvastatin paradoxically stimulated atherogenesis. Both effects occurred without changes in plasma cholesterol. Blood and vascular samples were obtained from the same animals. In the whole blood RNA samples, expression of MMP9, CD14 and IL-1RN reflected pro and anti-atherogenic drug effects. In the plasma, several proteins, e.g. IL-1β, IL-18 and MMP9 followed similar trends while protein readout was less sensitive than RNA analysis.Conclusion: In this study, we have identified inflammation-related whole blood RNA and plasma protein markers reflecting anti-atherogenic effects of ramipril and pro-atherogenic effects of simwastatin in a mouse model of atherosclerosis. This opens an opportunity for early, non-invasive detection of direct drug effects on atherosclerotic plaques in complex in vivo systems

    Lake-wide physical and biological trends associated with warming in Lake Baikal

    Get PDF
    Eutrophication and warming of lakes are occurring globally. Lake Baikal, a large ancient lake composed of three basins, has recently experienced benthic eutrophication at local sites and lake warming in the south basin. Here, we look for signals of warming and pelagic eutrophication across the entire lake using physical and biological data collected at a subset of 79 stations sampled ca. annually (1977–2003) during the period of summer stratification. Lake-wide, surface waters warmed 2.0 °C; and, consistent with this warming, the abundance of two warm-water, cosmopolitan zooplankton taxa increased between two (pelagic cladocerans) and 12-fold (Cyclops kolensis). C. kolensis increased throughout the lake, whereas cladocerans increased significantly only in the north basin. In contrast, abundance of the cold-water endemic copepod, Epischura baikalensis, that dominates the crustacean zooplankton community, did not change. With the exception of one coastal station in the north basin, there is no evidence of pelagic eutrophication. Although chlorophyll concentrations increased 46% lake-wide (0.82 to 1.20 μg/L), the increasing trend was significant only in the south basin. Surprisingly, mean Secchi transparency increased by 1.4 m lake-wide across the 26-year time series with significant deepening of water transparency occurring in the central and north basins. This suggests a decline in productivity in the north and middle basins, but an increase in the south basin. Taken together, these findings suggest that physical and biological changes associatedwithwarming have occurred in Lake Baikal, butwide-spread pelagic eutrophication in the lake\u27s three basins has not

    Long-Lasting Visuo-Vestibular Mismatch in Freely-Behaving Mice Reduces the Vestibulo-Ocular Reflex and Leads to Neural Changes in the Direct Vestibular Pathway

    Get PDF
    International audienceCalibration of the vestibulo-ocular reflex (VOR) depends on the presence of visual feedback. However, the cellular mechanisms associated with VOR modifications at the level of the brainstem remain largely unknown. A new protocol was designed to expose freely behaving mice to a visuo-vestibular mismatch during a 2-week period. This protocol induced a 50% reduction of the VOR. In vivo pharmacological experiments demonstrated that the VOR reduction depends on changes located outside the flocculus/paraflocculus complex. The cellular mechanisms associated with the VOR reduction were then studied in vitro on brainstem slices through a combination of vestibular afferent stimulation and patch-clamp recordings of central vestibular neurons. The evoked synaptic activity demonstrated that the efficacy of the synapses between vestibular afferents and central vestibular neurons was decreased. In addition, a long-term depression protocol failed to further decrease the synapse efficacy, suggesting that the VOR reduction might have occurred through depression-like mechanisms. Analysis of the intrinsic membrane properties of central vestibular neurons revealed that the synaptic changes were supplemented by a decrease in the spontaneous discharge and excitability of a subpopulation of neurons. Our results provide evidence that a long-lasting visuo-vestibular mismatch leads to changes in synaptic transmission and intrinsic properties of central vestibular neurons in the direct VOR pathway. Overall, these results open new avenues for future studies on visual and vestibular interactions conducted in vivo and in vitro

    Urinary Albumin Excretion is Associated with Pulmonary Hypertension in Sickle Cell Disease: Potential Role of Soluble Fms-Like Tyrosine Kinase-1

    Get PDF
    Pulmonary hypertension (PHT) is reported to be associated with measures of renal function in patients with sickle cell disease (SCD). The purpose of this exploratory study was to determine the relationship between albuminuria and both clinical and laboratory variables in SCD

    Understanding and acting on the developmental origins of health and disease in Africa would improve health across generations.

    Get PDF
    Data from many high- and low- or middle-income countries have linked exposures during key developmental periods (in particular pregnancy and infancy) to later health and disease. Africa faces substantial challenges with persisting infectious disease and now burgeoning non-communicable disease.This paper opens the debate to the value of strengthening the developmental origins of health and disease (DOHaD) research focus in Africa to tackle critical public health challenges across the life-course. We argue that the application of DOHaD science in Africa to advance life-course prevention programmes can aid the achievement of the Sustainable Development Goals, and assist in improving health across generations. To increase DOHaD research and its application in Africa, we need to mobilise multisectoral partners, utilise existing data and expertise on the continent, and foster a new generation of young African scientists engrossed in DOHaD

    Histopathologic changes in the uterus, cervix and vagina of immature CD-1 mice exposed to low doses of perfluorooctanoic acid (PFOA) in a uterotrophic assay

    Get PDF
    The estrogenic and antiestrogenic potential of perfluorooctanoic acid (PFOA) was assessed using an immature mouse uterotrophic assay and by histologic evaluation of the uterus, cervix and vagina following treatment. Female offspring of CD-1 dams were weaned at 18 days old and assigned to groups of equal weight, and received 0, 0.01, 0.1, or 1 mg PFOA/kg BW/d by gavage with or without 17-β estradiol (E2, 500 μg/kg/d) from PND18-20 (n=8/treatment/block). At 24 hr after the third dose (PND 21), uteri were removed and weighed. Absolute and relative uterine weights were significantly increased in the 0.01 mg/kg PFOA only group. Characteristic estrogenic changes were present in all E2-treated mice; however, they were minimally visible in the 0.01 PFOA only mice. These data suggest that at a low dose PFOA produces minimal histopathologic changes in the reproductive tract of immature female mice, and does not antagonize the cellular effects of E2
    corecore