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Eutrophication and warming of lakes are occurring globally. Lake Baikal, a large ancient lake composed of three
basins, has recently experienced benthic eutrophication at local sites and lake warming in the south basin. Here,
we look for signals of warming and pelagic eutrophication across the entire lake using physical and biological
data collected at a subset of 79 stations sampled ca. annually (1977–2003) during the period of summer stratifi-
cation. Lake-wide, surface waters warmed 2.0 °C; and, consistent with this warming, the abundance of two
warm-water, cosmopolitan zooplankton taxa increased between two (pelagic cladocerans) and 12-fold
(Cyclops kolensis). C. kolensis increased throughout the lake, whereas cladocerans increased significantly only
in the north basin. In contrast, abundance of the cold-water endemic copepod, Epischura baikalensis, that domi-
nates the crustacean zooplankton community, did not change. With the exception of one coastal station in the
north basin, there is no evidence of pelagic eutrophication. Although chlorophyll concentrations increased 46%
lake-wide (0.82 to 1.20 μg/L), the increasing trend was significant only in the south basin. Surprisingly, mean
Secchi transparency increased by 1.4 m lake-wide across the 26-year time series with significant deepening of
water transparency occurring in the central and north basins. This suggests a decline in productivity in the
north and middle basins, but an increase in the south basin. Taken together, these findings suggest that physical
and biological changes associatedwithwarming have occurred in Lake Baikal, but wide-spread pelagic eutrophi-
cation in the lake's three basins has not.

© 2015 The Authors. Published by Elsevier B.V. on behalf of International Association for Great Lakes Research. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Lakes world-wide are impacted by climate change, eutrophication,
and their interactive effects (Jeppesen et al., 2010, 2014; Moss et al.,
2011). Among ancient lakes – those containing water since at least the
last interglacial period – evidence of recent warming, eutrophication,
or both have been reported for LakeBiwa (warming and eutrophication;
Hsieh et al., 2010, 2011), Lake Hovsgol (warming; Batima et al., 2004),
Lake Ohrid (warming; Matzinger et al., 2006, 2007), Lake Tanganyika
(warming; Verburg et al., 2003), Lake Malawi (eutrophication; Hecky
et al., 2003; Otu et al., 2011), and the brackish Caspian Sea (warming
and eutrophication; Huseynov, 2011; Leonov and Stygar, 2001).

Surface waters in the south basin of Lake Baikal, the world's most
voluminous and ancient lake, have warmed 2.4 °C in summer over the

last 60 years (Hampton et al., 2008; Shimaraev and Domysheva,
2013). Likewise, recent surveys confirm that benthic cultural eutrophi-
cation is occurring at localized sites in the coastal zone of this lake
(Kravtsova et al., 2012, 2014). Specifically, large increases in benthic
algal abundance and shifts in zonation, coupled with high concentra-
tions of nutrients, illustrate the perils of discharging untreated sewage
into the coastal zone of oligotrophic Lake Baikal (Kravtsova et al.,
2012, 2014; Timoshkin et al., 2014). Despite evidence for localized
warming and coastal benthic eutrophication, it is still unknown
whether warming and eutrophication of the water column are oc-
curring lake-wide.

Detecting lake-wide warming or eutrophication of the pelagic
zone at Lake Baikal is challenging due to the lake's great size and its
heterogeneous geomorphology. Stretching across four degrees of lati-
tude (52–56°N), the lake contains three distinct basins and multiple
bays (Fig. 1), some of the latter are considerably more productive than
offshore waters. Although plankton and various physical parameters
have been monitored for more than 60 years at Lake Baikal by Russian
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researchers (Galazyi, 1993; Kozhov, 1963; Kozhova and Izmest'eva,
1998; Popovskaya, 2000; Shimaraev et al. 2002), a spatially intensive,
multi-decadal investigation that integrates the responses of multiple
physical and biological variables across the entire lake has not been
published previously.

Here we use lake-wide physical and biological data collected
across 26 years to assess two environmental challenges facing the lake
today: climate warming and pelagic eutrophication. We address three
questions: 1) Is warming similar in magnitude to that reported for the
south basin occurring throughout Lake Baikal? 2) Is the pelagic zone
of the lake eutrophying? 3) Are zooplankton (i.e., copepods and cladoc-
erans) community structure and abundance changing in ways that are
consistent with warming, eutrophication, or both? Results from our
spatial–temporal analyses suggest that physical and biological changes

associated with warming have occurred in Lake Baikal, but there is no
evidence of wide-spread pelagic eutrophication.

Methods

Samples were collected once per year at a subset of 79 stations
(typically N54 stations) throughout the lake (Fig. 1). Water tempera-
ture, Secchi transparency and zooplankton species composition and
abundance were sampled from 1977 to 2003; chlorophyll a was sam-
pled from 1977 to 2004. All sampling occurred during the months of
August and September when the lake was stratified, with a median
sampling date of 29 August in the south basin, 4 September in the
central basin, and 10 September in the north basin. Lake-wide sampling
for water temperature, Secchi depth, and chlorophyll did not occur for

Fig. 1.Map of Lake Baikal showing sampling stations, depth contours (meters), basins, and largest bays (Barguzin, Chivyrkuy Bay, Maloe More Strait). Stations within areas sampled are
identified by diamonds (south basin), triangles (middle basin), circles (north basin), and crosses (Selenga River delta, bays, or Maloe More Strait). The lake, located near the Russian–
Mongolian border, stretches from 52 to 56° north latitude (inset map).
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8–11 years during the middle of the time series; however, zooplankton
sampling occurred atmultiple stations throughout the lake for 20 of the
26 years of the time series (Fig. 2). Despite this sampling irregularity, a
sufficient number of stations were sampled to characterize lake-wide
trends in temperature, chlorophyll, Secchi, and zooplankton abundance
in each of the basins over the 26-year period.

Sampling stations were generally distributed along transects ex-
tending from thewest to east shore across each of the lake's three basins
with additional stations located within shallow, more productive bays
(Chivyrkuy Bay, Barguzin Bay, and Maloe More Strait) and the Selenga
River delta (Fig. 1). Stations ≤8 km from the Baikalsk Pulp and Paper
Mill or its discharge pipe were not included in the data set.

Water temperature, chlorophyll, Secchi depth, and zooplankton
abundances were quantified using standard procedures described else-
where (Timoshkin, 1995; UNESCO, 1966). Although water temperature
and chlorophyll a concentrations were determined at 0 m, as well as
additional depths (e.g., 10 and 50 m) in some years, we restrict our
temperature and chlorophyll analyses to surface values only. Rotifer
and crustacean zooplankton were sampled with a closing plankton
net (37.5-cm diameter, 100 μm mesh) generally at depth layers of 0–
50 m or each of the co-terminous depth layers of 0–25 and 25–50 m.
At shallow stations (b50 m), however, sampled depth layers varied
with maximum depth of the sampling station. Zooplankton samples
were preserved with formalin, and three subsamples per net tow
were counted in their entirety in a Bogorov chamber under 100×
magnification. Counts for each zooplankton taxa included juvenile life
stages (e.g., copepodites and nauplii for copepods) as well as adults.

Among zooplankton, we focus on crustacean taxa as sensitive
indicators to lake warming, eutrophication, and other types of environ-
mental change (Jeppesen et al., 2011). Also, the pelagic zooplankton of
Lake Baikal are particularly amenable to use as ecological indicators
because there are few species, and they have contrasting thermal niches
and expected responses to eutrophication. For example, Epischura
baikalensis, an endemic calanoid copepod and a cold-water stenotherm,
typically comprises 90% of the zooplankton biomass. The two other
taxonomic groups present during summer include the cladocerans
(Daphnia spp. and Bosmina longirostris) and a cyclopoid copepod
(Cyclops kolensis). These are warm-water cosmopolitan taxa that
increase in abundance inwarmerwater and under eutrophic conditions
(Hampton et al., 2008; Hsieh et al., 2011; Straile and Geller, 1998).
Although the zooplankton community of Lake Baikal also includes
rotifers and an endemic pelagic amphipod, we did not include these
taxa in our analyses because thermal tolerances of the rotifer taxa are

less well known than those of the crustacean zooplankton, and the
pelagic amphipod, which enters surface waters (0–50 m) only at
night, was not sampled.

Spatial–temporal analyses

Lake-wide temporal trends in surface water temperature, surface
chlorophyll a, Secchi transparency, and the abundance of each of
the three zooplankton groups were determined using linear regression
applied to basin means. These means were calculated by averaging
values across all stations for each of the three basins per year in which
sampling occurred between 1977 and 2003. In other words, three
means – one for each basin – were plotted for each variable and year
in which sampling occurred across the time series. When calculating
basin means, data from stations in the shallow bays (i.e., Chivyrkuy
Bay, Maloe More Strait, Barguzin Bay) and the Selenga River delta
were excluded, because these shallowareas canbe considerablywarmer
andmore eutrophic than the rest of the lake, and they are not represen-
tative of the lake as a whole. Separate regressions describing temporal
trends for the bays (Chivyrkuy Bay, Barguzin Bay, and Maloe More),
and the Selenga Delta were not possible due to too few samples across
time in these locations. For lake-wide and basin-wide regressions,
values for chlorophyll, Secchi depth, and zooplankton abundances
were log (ln) transformed to improve normality.

Sen's slopes
To describe temporal trends at individual stations for the environ-

mental variables (temperature, chlorophyll, and Secchi depth) and the
abundance of each zooplankton group, we carried out Mann–Kendall
trend tests. The Mann–Kendall test is a nonparametric method that
uses Kendall's Tau to evaluate if significant trends exist in time-series
data (Mann, 1945). To determine the rate of change for significant
trends, we used Sen's slope — an estimate of the rate of change which
represents the median slope of all possible pairwise slopes (Sen,
1968). These methods were chosen as they are not sensitive to outliers,
can handle missing data, and are more accurate than linear regression
for skewed or heteroskedastic data (Rousseeuw and Leroy, 1987). The
Mann–Kendall tests and Sen's slope calculations were carried out in
the R programming language using the TheilSen function found in the
openair package (Carslaw and Ropkins, 2012). Stations with fewer
than 10 years of environmental or zooplankton data were excluded
from trend calculations.

Fig. 2. Number of stations sampled each year from 1977 to 2004 for chlorophyll (A), temperature (B), Secchi transparency (C), and zooplankton (D). Data from years in which only one
station was sampled per basin were not included in regressions, calculations of Sen's slope, or kriging.
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Kriging
Ordinary krigingwas used to estimate the average spatial variability

of environmental variables and abundance of zooplankton groups
throughout the lake over the entire time series. Analyses of environ-
mental variables used summer surface water temperature and chloro-
phyll concentrations averaged for each station across the entire time
series. The chlorophyll model included only stations having at least
4 years of data, with the exception of one station sampled three times
in Chivyrkuy Bay and one station sampled three times in the Selenga
Delta. These two stations were included to better reflect spatial trends
in these less frequently sampled areas. The temperaturemodel included
only stations having at least 6 (south basin and Selenga Delta stations)
or 9 (middle andnorth basin stations) years of data. For eachmodel, sta-
tions were selected to ensure optimal models and to minimize artificial
‘bulls-eye’ effects around individual points. The kriging models also in-
cluded first order trend removal to account for a slight spatial trend in
both chlorophyll and temperature. Secchi depth values were not kriged
because the data showed no spatial autocorrelation (i.e., no spatial pat-
terns). The kriged models for the zooplankton groups included stations
sampled at least 10 times in the main body of the lake or 4 times in the
bays and deltas to mirror the stations used in Sen's slope analysis while
still capturing patterns in the less-sampled bays and deltas.

Hotspot analysis
To identify clusters of stations in the lake where E. baikalensis and

the pelagic cladocerans increased or decreased in abundance over
time, hotspot analysis (Ord andGetis, 1995)was applied to Sen's slopes.
To prevent zero Sen's slopes from being considered ‘low’ values in the
analysis, we multiplied all Sen's slopes by 109. We chose the distance
band atwhich spatial autocorrelationwas highest, based on calculations
from incremental Moran's I. No hotspot analysis of Sen's slope values
was performed for C. kolensis because this crustacean increased in abun-
dance at nearly all stations throughout the entire lake, resulting in no
significant spatial autocorrelation. In addition, no hotspot analyses of
Sen's slopes were performed for the environmental variables due to a
lack of spatial autocorrelation.

Multiple regression

To determine if warmer waters, increased chlorophyll, or both were
associated with changes in zooplankton abundance, we performed
mixed effectsmultiple regressionmodeling on log transformed calanoid
copepod, cyclopoid copepod, and cladoceran abundances as separate
response variables. Before proceeding, we confirmed that spatial auto-
correlation among neighboring stations in this data set was insufficient
to violate model assumptions, based on examination of variograms, but
that a north to south spatial trend did seem apparent. Accordingly, we
used both basin (north, central, south) and sampling year as random
effects and focused on examining temperature and chlorophyll as
fixed effects. We used the Akaike information criterion (AIC) to select
best-fit models (Burnham and Anderson, 2010), and for the best-fit
models, we calculated “conditional” and “marginal R2” using the formu-
lations of Nakagawa and Shielzeth (2013). Conditional R2 is an assess-
ment of the full model fit, and marginal R2 describes the proportion of
variance explained by the fixed factors alone.

Results

Environmental variables

Temperature, chlorophyll, and Secchi depth all increased significantly
lake-wide and across the time series (Fig. 3); however, temporal trends
within individual basins sometimes differed from that observed for
the lake as a whole (Table 1). For example, summer surface waters of
Lake Baikal warmed significantly, increasing on average 2.0 °C across
the entire lake from 1977 to 2003 (Fig. 3), but the increase was

significant in only two of the lake's three basins (Table 1; central basin
and north basin). Chlorophyll a increased significantly and on average
by 46% across the entire lake during the 27-year (1977–2004) time series
(Fig. 3). Although chlorophyll a trended upward in each basinwith time,
a significant increase occurred only in the south basin, but not in the
other two basins (Table 1). Likewise Secchi transparency increased sig-
nificantly lake-wide (Fig. 3) and on average 1.4 m across the 26-year

Fig. 3. Lake-wide temporal trends (±95% CI) of surface water temperature, surface
chlorophyll concentrations, and Secchi depth during August–September across the time
series (1977–2003 for temperature and Secchi; 1977–2004 for chlorophyll). Each letter
is an annual mean of values for all stations sampled in a given basin (S = south, C =
central, N = north basin). Thus, three basin means are plotted per year for each variable.
Statistical tests were performed on log transformed data for chlorophyll and Secchi depth
only to improve normality. Regression equations: water temperature = 0.074 * year−
135.2; chlorophyll a = 0.016 * year−30.3; Secchi depth = 0.056 * year−103.7.
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time series. Similarly to temperature, however, Secchi depth values in-
creased significantly in the north and central basins but not in the
south basin (Table 1).

Sen's slopes
Temporal trends for water temperature, chlorophyll, and Secchi

depth varied spatially across stations both within and among basins
according to the values of Sen's slope (Fig. 4). For example, even though
surfacewaterswarmed significantly in the north and central basins (see
above), there were locations within each of these two basins where
temperature decreased across the time series (Fig. 4). The largest
decrease in surface temperatures occurred for stations at the southern
tip of the south basin although none of these decreases were significant.
Significant Sen's slope values for temperature occurred at 7 stations
with all values being positive indicating a significantwarming of surface

waters across the time series at these stations, most of which were
located in the north and central basins. Of these 7 stations, three were
near or at the mouth of two shallow bays, Chivyrkuy Bay and Barguzin
Bay.

Forty four stations, or 67% of the sampling stations, exhibited a
positive Sen's slope value for chlorophyll meaning that chlorophyll
increased across much of the lake during the 27 year time series
(Fig. 4). Similarly to temperature, however, only seven stations exhibit-
ed significant Sen's slope values for chlorophyll, with chlorophyll
increasing at 4 of these stations, while it decreased at the remaining
three stations. Among the four stations where chlorophyll increased
significantly, three were located in the south basin while the remaining
stationwas 1.4 km from themouth of the Tyya River near Severobaikalsk
in the North basin.

Water transparency, as measured by Secchi depth, increased across
the time series for 70% (45 out of 64 stations) of the stations throughout
the lake according to the values of Sen's slope (Fig. 4). Eleven stations, or
only 17% of the total, exhibited significant Sen's slope values with all
values being positive indicating increasing water transparency. Seven
of these 11 stations were located in the north basin.

Finally, Sen's slope values sometimes lacked a one-to-one corre-
spondence among the three environmental variables at a given location.
In other words, the direction of temporal trends (increasing or decreas-
ing) at any given station for the three environmental variables was
sometimes unrelated. For example, at eight stations exhibiting a signif-
icant increase in water transparency, chlorophyll increased when the
opposite would be expected if algal increases were reducing water
transparency (Fig. 4).

Kriging
Considerable spatial variability in average surface water temper-

ature and chlorophyll concentrations existed in the lake during
summer (Fig. 5). Warmest surface waters (13–14 °C) occurred in
Chivyrkuy Bay, the Selenga Delta, the eastern side of the north and
central basins, and the southernmost tip of the lake. Colder waters
(11–12 °C) were found at the northern tip of the north basin and in
parts of Maloe More. Highest chlorophyll concentrations (1.4–
2.3 μg/L) occurred in the waters of the Selenga Delta, extending near-
ly across the lake to the opposite shore. Other smaller areas with high
chlorophyll concentrations included small bays within Chivyrkuy Bay
and the waters near the settlement of Talanka on the eastern shore of

Table 1
Results of lake-wide and basin-wide univariate regressions for each environmental vari-
able (surface water temperature, °C; surface chlorophyll a concentrations, μg/L; Secchi
depth, m) versus year across the time series (1977–2003 for temperature and Secchi,
1977–2004 for chlorophyll). Lake-wide regressions were based on annual basin means
for each variable; basin-wide regressions were performed on the station values. Stations
within bays (ChivyrkuyBay, BarguzinBay),MaloeMore Strait, and the two stations closest
to the Selenga Delta were not included in these regressions. Values for chlorophyll
concentrations and Secchi depth were log transformed to improve normality; it was not
necessary to transform the water temperature data. m= regression slope. Bolded values
are significant at the 0.05 level.

Model df m F p R2

Temperature
Lake-wide 1, 46 0.080 13.15 b0.01 0.20
North basin 1, 14 0.083 7.08 0.02 0.29
Central basin 1, 14 0.110 10.42 b0.01 0.39
South basin 1, 14 0.043 0.83 0.38 0.0

Chlorophyll
Lake-wide 1, 49 0.016 11.09 b0.01 0.17
North basin 1, 15 0.013 2.31 0.15 0.08
Central basin 1, 15 0.012 1.78 0.20 0.05
South basin 1, 15 0.023 7.64 0.01 0.29

Secchi
Lake-wide 1, 46 0.007 18.53 b0.001 0.27
North basin 1, 14 0.011 25.22 b0.001 0.62
Central basin 1, 14 0.010 11.06 b0.01 0.40
South basin 1, 14 0.001 0.07 0.79 0.0

Fig. 4. Sen's slope values depicting the rate of change for surface water temperature (°C), surface chlorophyll concentrations (μg/L), and Secchi depth (m) across the time series at each
station with 10 or more years of data. Dots represent stations sampled; the color of the dot indicates whether Sen's slope was positive or negative (orange represents an increase, blue
a decrease), and the size of the dot represents the relative magnitude of the rate of change at a particular station. Black squares identify stations where Sen's slope was significant
(p b 0.05) across the time series for that station.
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the central basin opposite Olkon Island. Lowest chlorophyll concentra-
tions (0.6–0.9 μg/L) occurred throughout much of the north basin.

Zooplankton abundance

Abundance of the two cosmopolitan taxa, C. kolensis and pelagic
cladocerans, increased significantly throughout the entire lake
and across the time series, whereas densities of the endemic
E. baikalensis did not change (Fig. 6). C. kolensis abundance increased
12-fold across the time series and at a rate that was approximately 2
times faster than that for pelagic cladocerans. Also, C. kolensis abun-
dance increased significantly across time within each of the lake's 3
basins (Table 2). Although pelagic cladoceran abundance trended
upward in each basin with time, their increase was significant only
in the north basin, but not in the other two basins (Table 2).
E. baikalensis abundance did not change within any of the three ba-
sins across the time series (Table 2).

Sen's slopes
More complex temporal–spatial patterns for the zooplankton were

evident when examining the Sen's slope values calculated for each
individual station. E. baikalensis and pelagic cladoceran abundances
increased at most stations in the north basin across the time series,
while C. kolensis abundance increased at 92% of the 52 total sampling
stations throughout the entire lake (Fig. 7). The increasing trend in
C. kolensis abundance was significant at 23% of the total sampling sta-
tions, with these stations distributed approximately equally between
offshore and nearshore locations and among basins. This significant
positive trend in C. kolensis abundance occurred at 6 times more sam-
pling stations than it did for pelagic cladocerans. Also noteworthy was
the decreasing trend in E. baikalensis abundance at most stations
(78%) throughout the south and central basins, however only two of
these stations exhibited a significant decline. In contrast, the abundance
trend for pelagic cladocerans across stations in these same basins was
more variable. For example, pelagic cladoceran abundance increased
at 36% of the stations, remained stationary (28% of stations), or de-
creased (36% of stations) in these two basins across the time series.

Hotspot analysis
The northern half of the north basin contained hotspots, or signifi-

cant clusters of stations, where E. baikalensis and pelagic cladocerans
increased in abundance over time (Fig. 8). Likewise the central basin
and south basin contained cold spots where significant clustering of
stations with decreasing abundances of E. baikalensis and pelagic cla-
docerans, respectively, occurred. No hotspot analysis was performed
for C. kolensis because this crustacean increased at nearly all stations
throughout the lake.

Kriging
The spatial distribution of average abundances of the three zoo-

plankton groups across the time series revealed contrasting patterns
(Fig. 9). Highest abundance for each of the twowarm-loving cosmopol-
itan taxa (pelagic cladocerans, 10.0–16.9 number/L; C. kolensis, 9.0–11.8
number/L) occurred in Chivyrkuy Bay, the warmest part of the lake;
whereas the cold-water stenotherm, E. baikalensis, was present at its
lowest densities (9.95–12.0 number/L) here. Somewhat surprisingly,
the highest densities of E. baikalensis (22.0–25.9 number/L) occurred
in a fairly large area in the north basin where pelagic cladoceran
densities were also high (5.0–10.0 number/L). In contrast, C. kolensis
abundance was lowest (1.4–2.0 number/L) in this area. Both C. kolensis
and E. baikalensis, however, coexisted at relatively high abundances at
the southernmost tip of the south basin.

Multiple regression

Including year and basin as random effects helped to produce
models with relatively good explanatory power, with conditional R2

values ranging from 0.314 to 0.563; but the fixed effects of temperature
and chlorophyll had low explanatory power for zooplankton abundance
patterns overall (Table 3). The best model for E. baikalensis included
a significant interaction between temperature and chlorophyll, charac-
terized by a negative relationship with temperature under higher chlo-
rophyll conditions (unpublished), but the explanatory power of
this model was weak (marginal R2 = 0.0379). The best models for cla-
docerans included a positive relationship with temperature, but they
also had low explanatory power (marginal R2 = 0.0284). The top

Fig. 5. Average surface water temperature (°C) and surface chlorophyll (μg/L) concentrations throughout the lake during August–September as revealed by kriging. Darker shades
represent higher temperatures or chlorophyll concentrations, while lighter shades represent lower temperatures and chlorophyll concentrations. The chlorophyll kriging model included
stations sampled at least three (bay stations) or four times (basin stations), whereas the temperature model included only stations sampled at least six (south basin and Selenga delta
stations) or nine times (middle and north basin stations). The time series used for kriging was 1977–2003 for water temperature and 1977–2004 for chlorophyll. Secchi depth values
were not kriged because these data showed no spatial patterning.
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model for Cyclopswas a better fit (marginal R2 = 0.1256) with Cyclops
abundance positively associated with both temperature and
chlorophyll.

Discussion

Much has been learned from the inter-annual sampling of plankton
and physical parameters about the trophic status of different parts of
Lake Baikal (Kozhov, 1963; Kozhova and Izmest'eva, 1998;
Popovskaya, 2000), the horizontal, vertical and seasonal distribution of
its plankton (e.g., Fietz et al., 2005; Kozhova and Izmest'eva, 1998;
Timoshkin, 1995), and the response of the lake's south basin to climate
warming (Hampton et al., 2008, 2014; Moore et al., 2009; Shimaraev
et al., 2002; Todd and Mackay, 2003). Here we discuss our findings
from the first multi-decadal analysis that integrates responses of phys-
ical and biological variables across the entire lake. Our analyses show
that surface water temperature and zooplankton community structure
in summer have changed in ways that are consistent with epilimnetic
warming. We found no evidence in these data that lake-wide pelagic
eutrophication has occurred.

Lake warming

Physical response
The 2.0 °C average increase in surfacewater temperature in summer

across the entire lake during the 26 year time series (Fig. 3) is a remark-
able increase for the world's largest, deepest lake where annual surface
temperatures average only 5 °C (Kozhova and Izmest'eva, 1998). This
increase is similar to the 2.4 °C warming of surface waters reported in
the southern basin at a nearshore station during June–August over the
last 60 years (Hampton et al., 2008). The detection of warming surface
waters in late summer is perhaps all the more surprising given the
large variability in surface temperatures at this time of year resulting
from complex downwellings and upwellings that occur throughout
Lake Baikal (Troitskaya et al., 2015).

The physical response of deep lakes to climate warming extends be-
yond simple warming of surface waters to include increased strength
and length of summer stratification which can reduce the transport of
nutrient-rich deep waters to the surface mixed layer (Verburg et al.,
2003). Neither of these stratification changes, however, could be
assessed here, because too few depths were sampled per station for
detecting the thermocline. Also, the single sampling date per station
and year precluded quantifying the duration of summer stratification.
It should be noted, however, that high-resolution depth sampling of
temperature and plankton at a single station in the south basin in

Fig. 6. Lake-wide temporal trends in abundance (number/L; ±95% CI) of Epischura
baikalensis, pelagic cladocerans, and Cyclops kolensis in the 0–50 m water layer during
August–September across the 26-year time series (1977–2003). Abundances are sums of all
post-egg life stages per taxon (e.g., nauplii, copepodites and adults for copepods). See Fig. 3
caption for explanation to letters indicating annual mean abundance values per taxon for
all stations sampled in a given basin. Three basin means are plotted per year for each taxon.
Shallow stations (b50 m) or stations located in the bays or near the Selenga Delta were not
included in these analyses. Statistical tests were performed on log transformed data to im-
prove normality. Regression equations: Epischura abundance = 0.033 * year−47.6; pelagic
cladoceran abundance = 0.141 * year−278.9; Cyclops abundance = 0.263 * year−520.0.

Table 2
Results of lake-wide and basin-wide univariate regressions of abundance (number/L) of
each zooplankton group (Epischura baikalensis, pelagic cladocerans, and Cyclops kolensis)
versus year across the time series (1977–2003). Lake-wide regressions were based on
annual basin means for each zooplankton group; basin-wide regressions were performed
on the station values. Stations within bays (Chivyrkuy Bay, Barguzin Bay), Maloe
More Strait, and the two stations closest to the Selenga Delta were not included in these
regressions. All zooplankton abundance valueswere log transformed to improve normality.
m= regression slope. Bolded values are significant at the 0.05 level.

Model df m F p R2

Epischura baikalensis
Lake-wide 1, 56 0.005 0.39 0.53 0.00
North basin 1, 17 0.001 0.01 0.92 0.00
Central basin 1, 17 0.013 0.74 0.40 0.00
South basin 1, 18 0.002 0.03 0.86 0.00

Pelagic cladocerans
Lake-wide 1, 56 0.022 5.61 0.02 0.08
North basin 1, 17 0.028 4.26 0.05 0.15
Central basin 1, 17 0.021 2.57 0.13 0.08
South basin 1, 18 0.015 1.48 0.24 0.02

Cyclops kolensis
Lake-wide 1, 56 0.042 25.06 b0.001 0.30
North basin 1, 17 0.029 10.10 b0.01 0.34
Central basin 1, 17 0.046 9.26 b0.01 0.31
South basin 1, 18 0.050 7.53 0.01 0.26
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summer revealed a strengthening thermal gradient in the top 50 m of
the lake over the last 45 years (Hampton et al., 2014). The reduced
mixing in the upper waters may explain why diatoms, heavy cells de-
pendent upon mixing to keep them in surface waters, have shifted
steadily to deeper depths over this time period (Hampton et al., 2014).

Finally, climatewarming can lead to thawing of permafrost and veg-
etation changes, dramatically increasing inputs of DOC to rivers and
lakes in northern boreal watersheds (Frey and Smith, 2005; Larsen
et al., 2011). This, in turn, can cause a decline in lake productivity if
light rather than nutrients becomes limiting (Karlsson et al., 2009).
Given thewidespread increase inwater transparency across Lake Baikal
during the 26-year time series (Figs. 3 and 4), this consequence of in-
creasing inputs of DOC from the watershed seems unlikely. However,
our data suggest that DOC driven reductions in light penetration may
be happening at two stations closest to the Selenga Delta where water

transparency decreased while algal biomass declined significantly
across the time series (Fig. 4). Given that the Selenga River delivers
more surface inflow from the watershed than any other river to the
lake (i.e., 50% of the lake's total; Kozhov, 1963), and that permafrost
melting is occurring within parts of this river's watershed (Bohannon,
2008), a climatically-induced increase in DOC input might be expected
first near the delta of this river.

Biological responses
Among the zooplankton, the two cosmopolitan groups that are

thought to perform best in warmer water – C. kolensis and cladocerans –
were associated positively with lake temperatures (Table 3) and
increased significantly in abundance across time throughout the
lake (Fig. 6). Our results regarding the spatial distribution of these
taxa (Fig. 9) are in agreement with previous studies (Melnik et al.,

Fig. 7. Sen's slope values depicting the rate of change in abundance of E. baikalensis, C. kolensis, and pelagic cladocerans at each station with 10 or more years of data. Sampling was
conducted during August–September across the time series (1977–2003). See Fig. 4 caption for interpretation of Sen's slope symbols. Shallow stations (surface to substrate b50m) or sta-
tions located in the bays or near the Selenga Delta were not included in analyses.

Fig. 8. Hotspot analysis of Sen's slopes for E. baikalensis and pelagic cladocerans. Dots represent stations with the color of the dot indicating the Z score which tests for significant spatial
clustering of high or low values. Red dots represent a significant (p b 0.05) cluster of high values at a station and nearby stations,while a blue dot indicates a significant cluster of low values
at the station and nearby stations.White dots represent no significant spatial clustering of values. No hotspot results are presented for C. kolensis because it increased across the entire lake,
meaning the whole lake was identified as a hotspot for this species.
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1998, 2006) and show that their abundances are highest in the
warmest parts of the lake (e.g., Chivyrkuy Bay). Surprisingly, abun-
dances of E. baikalensis, a cold loving stenotherm, did not decrease
significantly through time as waters warmed and were not negative-
ly associated with temperature. This species may be protected from

warming surface waters by diel vertical migration below the sum-
mer thermocline (10 to 20 m; Yoshioka et al. 2002) where it inhabits
depths as deep as 250 to 500 m (Kozhova and Izmest'eva 1998). In
contrast, the warm-loving cosmopolitans are largely limited to the
upper surface waters (0 to 25–30 m) during summer stratification
(Kozhova & Izmest'eva 1998; Hampton et al. 2014). Although it
could be argued that an increase in fishing pressure across time
could indirectly drive an increase in Daphnia spp. and C. kolensis by
reducing fish predation on them, at least two lines of evidence
argue against this. The abundance of omul (Coregonus autumnalis),
a planktivorous fish that is themain target of commercial and private
fishers in Lake Baikal, does not seem to have changed during the
period of our study; however, uncertainty estimates are large for
the survey methods used (Melnik et al. 2009). Second, planktivorous
fish are unlikely to consume many Cyclops due to its effective escape
response (Drenner et al., 1978).

The large, rapid, increase of C. kolensis throughout all three basins
of the lake (Table 2, Fig. 7) was particularly striking, and we suggest
that warmer water temperatures, either directly or indirectly, were re-
sponsible. Based on the results of laboratory growth and reproduction
experiments performed across a range of temps (5,10,15, and 20 °C)
typical for Lake Baikal, C. kolensis is expected to respondfirst towarming
surface waters, because it occupies an intermediate thermal niche
(optimal survival and reproduction at 10–15 °C) between the cold-
loving E. baikalensis (5–10 °C) and the warm-water loving pelagic
cladocerans (15–20 °C) (Ted Ozersky, University of Minnesota-Duluth,
2014, personal communication) that flourish only in summer when
the lake is warmest (≥15 °C). These laboratory results are also consis-
tent with Kozhov's (1963) suggestion based on field observations that
the optimum temperature for C. kolensis was 12–14 °C. He also noted
that this species spreads and increases in abundance through all the
open waters when water temperatures are greater than usual. Interest-
ingly, warmer water temperatures may also favor C. kolensis indirectly
by increasing food for C. kolensis nauplii, ameliorating a juvenile bottle-
neck reported for this species in a German lake (Santer and Lampert,
1995). C. kolensis nauplii require high concentrations of flagellates for
survival and development, and these small flagellated cells become
abundant in Baikal only when waters warm in summer and thermal
stratification intensifies (Fietz et al., 2005).

The increasing trend in C. kolensis and pelagic cladoceran abundances
could have food web consequences for Lake Baikal, because C. kolensis

Fig. 9. Average abundances (number/L) of E. baikalensis, C. kolensis, and pelagic cladocerans throughout the lake during August–September across the entire time series (1977–2003) as
revealed by kriging. Darker shades represent higher abundances, while lighter shades represent lower abundances. The krigedmodels for the zooplankton taxa included stations sampled
at least 10 times in themain body of the lake or 4 times in the bays and deltas. Abundances are sums of all post-egg life stages per taxon (e.g., nauplii, copepodites and adults for copepods)
in the 0–50 m water layer. At shallow stations (b50 m), sampled depth layers varied with maximum depth at the sampling station.

Table 3
Results frommixed effects multiple regression models (nlme package in R; Pinheiro et al
2014), with temperature and chlorophyll as fixed effects and sampling year and basin as
random effects. Conditional R2 is an estimate of model fit that includes both the fixed
and random effects, and marginal R2 describes the proportion of variance explained by
thefixed effects (NakagawaandSchielzeth, 2013). Allmodels included the randomeffects.
The full model (Temperature × Chl) includes an interaction between temperature and
chlorophyll as well as the main effects Temperature and Chlorophyll. We dropped the
interaction in the Temperature + Chlorophyll, and then considered Temperature and
Chlorophyll alone. The null model includes only the random effects. The five models for
each of the three taxa are ranked by AIC scores, where the lowest AIC indicates the best
fit (bold), and those models with AIC score differences of less than 2 are not considered
significantly different. Estimated coefficients are shown for eachmodel, with bold indicat-
ing coefficients that are significantwith themodel (p b 0.05). Themodel uses Type 2 sums
of squares; thusmain effects should not be consideredwhen the interaction term is signif-
icant and these are not shown. We excluded observations for which one or more of the
predictor values was missing (Chlorophyll = 344 missing values, Temperature = 342
missing values) such that a total of 412 observations were included in the models.

Model fit Coefficient estimates

AIC Marginal R2 Conditional R2 Temp × Chl Temp Chl

Epischura
Temp × Chl 840.45 0.037 0.314 −2.465
Chl 851.57 −0.238
Null 851.59
Temp 852.60 0.198
Temp + Chl 852.69 0.187 −0.231

Cyclops
Temp × Chl 873.14 0.125 0.517 2.035
Temp + Chl 880.57 1.440 0.405
Temp 884.18 1.415
Chl 927.54 0.333
Null 929.13

Pelagic cladocerans
Temp 890.74 0.028 0.563 0.859
Temp + Chl 892.42 0.029 0.563 0.854 −0.095
Temp × Chl 894.42 −0.040 0.879 0.008
Null 906.74
Chl 908.16 −0.132
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adults, when abundant in warm years, consume E. baikalensis nauplii
(Mazepova, 1978, 1998), and cladoceran grazers are likely competitors
with the largely herbivorous Epischura. This suggests that C. kolensis
and the pelagic cladocerans could potentially suppress densities of
the endemic E. baikalensis, a purported keystone species; yet, average
lake-wide densities of E. baikalensis did not change across the time series
(Fig. 6), with its densities declining significantly at only 2 of the 52 lake-
wide stations (Fig. 7). We suggest that the deep cold waters below the
thermocline may offer both a biotic refuge as well as a thermal refuge
for all life stages of E. baikalensis where it can escape predation and re-
duce competition with the warm-loving cosmopolitan zooplankton.

While C. kolensis abundance increased significantly in all lake basins
and over the 26-year time series, pelagic cladoceran and E. baikalensis
densities increased mostly in the northern end of the lake and at a sig-
nificant cluster of 12 to 15 stations (Fig. 8). Intriguingly, pelagic cladoc-
erans and E. baikalensis are bothmore herbivorous than C. kolensis. Their
joint increase in the northern parts of the lake may be related indirectly
to interannual changes in upwelling dynamics. For example, in the
northern basin, cold, nutrient-rich water begins to upwell earlier in
summer (late August) than in the other two basins and the upwelling
rapidly intensifies through September andOctober, possibly stimulating
phytoplankton growth, relative to the rest of the lake (Troitskaya et al.,
2015). Also intriguing is the inverse abundance pattern of C. kolensis in
the north basin relative to that of E. baikalensis and the pelagic cladoc-
erans that are maximally abundant here (Fig. 8). Because C. kolensis
nauplii, that feed only on flagellates, have a threshold food concentra-
tion that is more than 4 times higher than that for Daphnia (Santer
and Lampert, 1995), C. kolensis may be competitively excluded by the
filter feeding Daphnia and E. baikalensis in the north basin. The time
lags that would be associated with such indirect effects of temperature
and chlorophyll changes may help explain why relatively simple corre-
lationalmodels do not have strong explanatory powerwith this data set
(Table 3).

Eutrophication

Although our analyses lack nutrient data, the trends we report here
for chlorophyll and water transparency provide no evidence of pelagic
eutrophication of Lake Baikal between 1977 and 2004. Chlorophyll con-
centrations increased 46% lake-wide; but the increasewasmodest, from
0.82 to 1.20 μg/L (Fig. 3), and the increasing trendwas significant only in
the south basin (Table 1). Furthermore, water transparency increased
1.4 m lake-wide with significant increases in the north and central
basins but not the south basin. Taken together this suggests that pro-
ductivity may have increased in the south basin while decreasing in
the north and central basins across the time series. Although increased
nutrient input from the Selenga River into the south basin may have
contributed to increasing algal biomass there, a detailed study of Lake
Baikal's phytoplankton community conducted in all 3 basins in July dur-
ing the years 2001–2003 concluded that elevated algal biomass in parts
of the lake were not due to nutrient enrichment but instead were asso-
ciated with areas of warmer water and enhanced stratification (Fietz
et al., 2005). Interestingly, paleoanalysis of sedimentary diatoms also
provided no evidence of eutrophication in Baikal's offshore waters
(Mackay et al., 1998). Although corrections for differential diatomdisso-
lution were not known to be necessary at the time of Mackay et al.'s
(1998) research, a recent paleoanalysis incorporating the corrections
suggests the same outcome (Sarah Roberts, University of Nottingham,
2015, personal communication).

The only caveat to our conclusion of no pelagic eutrophication is a
significant positive trend in algal biomass at a single station in the
north basin (Fig. 4). This station, located near the mouth of the Tyya
River where sewage from the town of Severobaikalsk is discharged
into the lake, is also where severe benthic eutrophication resulting
from a malfunctioning sewage treatment plant was discovered in
2013 (Timoshkin et al., 2014). Our data raise the possibility that

nutrients from sewage may have fertilized phytoplankton growth at
this site many years prior to 2013, but this site is also influenced by in-
puts from the Upper Angara and Kichera Rivers to the northeast
(Kozhov, 1963). Interestingly, the first increase in chlorophyll a in this
region was recorded in 1979 (Kozhova et al., 1984).

It is possible that the description of spatial and temporal patterns for
chlorophyll (and other variables) will differ with the scale of analysis
(entire lake, separate basins, or individual stations). We argue that
basin responses are most useful for interpretation of temporal trends
because of the relative isolation of the different basins, their different
climates and watersheds, and their very different trends in develop-
ment and human usage. At the smallest scale, substantial uncertainty
is associated with trends at individual stations because: 1) stations
were not randomly located throughout the lake; 2) they were not
all sampled on the same date (or phenological date) in a given year;
and 3) horizontal and vertical mixing can cause contrasting trends in
multiple parameters (e.g., temperature, chlorophyll, Secchi depth and
zooplankton community composition) at stations separated by as little
as 20 km. This high degree of local uncertainty helps explain why so
few temporal trends at any given stationwere significant for a particular
variable. Station responses are presented here only to identify where
within a basin a significant trend may have occurred.

Even though the spatial distribution of sampling stations in the lake
was not ideal, the spatial pattern we report for chlorophyll abundance
across the lake (Fig. 5) agrees well with previous reports of higher
algal biomass in the south basin than in the north basin (Fietz et al.,
2005; Heim et al., 2004; Popovskaya, 2000). For example, Popovskaya
(2000) described a 3.5 fold higher algal biomass in the south basin
relative to the north basin in June, and she attributed this to nutrients
supplied by the Selenga River and a longer summer growing season in
the south than in the north. Our results, from August and September,
show on average, a slightly higher chlorophyll biomass in the south
than in the north basin; and our average chlorophyll concentrations
(south, 1.02±0.09; north, 0.90±0.07 μg/L,mean±95%CI, respectively)
compare well with those (south, 1.27 ± 0.23; north, 0.86 ± 0.13 μg/L)
reported by Fietz et al. (2005).

Finally, early signals of eutrophication in Lake Baikal may be expect-
ed to appear first in the littoral rather than the pelagic zone of Lake
Baikal, as seems to be happening around the towns of Severobaikalsk
in the northern part of the lake (Timoshkin et al., 2014) and Listvianka
and Bol'shie Koty in the south (Kravtsova et al., 2012; Timoshkin et al.,
2015), all places where benthic eutrophication was reported recently.
In contrast to Baikal's coastal areas, the enormous pelagic zone of Baikal,
equivalent in volume to that of all the LaurentianGreat Lakes combined,
is thought to be resistant to widespread cultural eutrophication, be-
cause a very large amount of nutrients would be necessary to eutrophy
such a large volume of water. However, the thin summer epilimnion
(upper 10–20 m water layer) constitutes a volume that is b3% of the
lake as a whole, making eutrophication of the upper mixed layer possi-
ble. Importantly, thewater column in summer is unstable, experiencing
sporadic, wind-driven upwelling and downwelling events (Troitskaya
et al., 2015). Thesemay protect the openwaters from cultural eutrophi-
cation in summer by episodically mixing and diluting nutrients to a
maximum depth of 250 m (Moore et al., 2009). If climate warming re-
duces the intensity or frequency of this sporadic mixing by diminishing
wind strength or continued warming of surface waters (enhancing
thermal stratification), the pelagic zone may become more vulnerable
to nutrient additions.

Lake-wide versus single station monitoring

The results of this study, and their comparison with high temporal
resolutionmonitoring of a single station in the south basin of Lake Baikal
(Hampton et al., 2008), underscore the difficult trade-off between
spatial and temporal resolutions in the design of monitoring programs.
The immense size and physically dynamic nature of Lake Baikal
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(Troitskaya et al., 2015) lead to large variations in physical, chemical
and biological parameters in time and space, raising questions about
the appropriate scale overwhich long-term trends should bemonitored
and interpreted. For example, results of high temporal resolution (every
10–14 days) sampling of a single station in the south-western portion of
the lake (Hampton et al., 2008) agree well with the trends we show
here for chlorophyll and Secchi transparency for the entire south
basin, even though sampling for the present study was conducted
only once per year. However, trends in the central and northern basins
differ from those in the south basin, emphasizing the necessity of lake-
wide monitoring.

Ideally, ecological monitoring programs for large lakes should com-
bine high spatial and temporal resolution of data collection (Hampton,
2013). While practical constraints limit the resolution of ecological
monitoring programs in all systems, monitoring in large ancient lakes
is often limited in its extent. We urge increased investment in monitor-
ing ancient lake ecosystems and greater focus on monitoring and
protecting their littoral zones (Cohen, 1992; Timoshkin et al., 2005)
where much of the biodiversity in these systems is concentrated
(Vadeboncoeur et al., 2011). The adoption of techniques such as remote
sensing of temperature and chlorophyll in surface waters and the
deployment of AUVs with sensors and cameras for underwater surveys
in coastal and pelagic waters would help increase the resolution of
sampling and therefore provide advanced warning of change that
may threaten the numerous endemic inhabitants of these venerable
ecosystems.
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