Mississippi State University Scholars Junction

Bulletins

Mississippi Agricultural and Forestry Experiment Station (MAFES)

12-1-1914

Cotton experiments 1914.

G. R. Hightower

E. R. Lloyd

W. F. Hand

William Newton Logan

J. S. Moore

See next page for additional authors

Follow this and additional works at: https://scholarsjunction.msstate.edu/mafes-bulletins

Recommended Citation

Hightower, G. R.; Lloyd, E. R.; Hand, W. F.; Logan, William Newton; Moore, J. S.; McKay, A. B.; Harned, R. W.; Scoates, Daniels; Brown, H. B.; Ranck, E. M.; Ricks, J. R.; Briscoe, C. F.; Ewing, Early C.; Morrison, J. K.; Wade, E. G.; Lobdell, R. N.; Gay, Mary; Ferris, Eugene Beverly; Ames, C. T.; and Walker, G. B., "Cotton experiments 1914." (1914). *Bulletins*. 311. https://scholarsjunction.msstate.edu/mafes-bulletins/311

This Article is brought to you for free and open access by the Mississippi Agricultural and Forestry Experiment Station (MAFES) at Scholars Junction. It has been accepted for inclusion in Bulletins by an authorized administrator of Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

Authors

G. R. Hightower, E. R. Lloyd, W. F. Hand, William Newton Logan, J. S. Moore, A. B. McKay, R. W. Harned, Daniels Scoates, H. B. Brown, E. M. Ranck, J. R. Ricks, C. F. Briscoe, Early C. Ewing, J. K. Morrison, E. G. Wade, R. N. Lobdell, Mary Gay, Eugene Beverly Ferris, C. T. Ames, and G. B. Walker

Mississippi Agricultural Experiment Station

BULLETIN No. 169.

COTTON EXPERIMENTS 1914

AGRICULTURAL COLLEGE, MISSISSIPPI December, 1914.

TUCKER PRINTING HOUSE JACKSON MISS

STATION STAFF

G. R. HIGHTOWER	President
E. R. LLOYD	Director and Animal Husbandman
J. R. RICKS	Vice-Director and Agronomist
W. F. HAND	Chemist
W. N. LOGAN	Geologist
J. S. MOORE	Dairy Husbandman
A. B. McKAY	Horticulturist
R. W. HARNED	Entomologist
DANIELS SCOATES	Agricultural Engineer
H. B. BROWN	Botanist
E. M. RANCK	Veterinarian
C. F. BRISCOE	Bacteriologist
E. C. EWING	Cotton Breeding
A. SMITH	In Charge of Beef Cattle Work
E. P. CLAYTON	Poultryman
A. G. HALL	Drainage Engineer*
S. S. JERDAN	Assistant Animal Husbandman*
H. F. HANSON	Assistant Animal Husbandman*
J. M. BEAL	Assistant Botanist
C. E. WILSON	Assistant Entomologist
MISS SIDNEY GAY	Stenographer
E. B. FERRIS	Assistant Director, McNeill Station
C. T. AMESAs	sistant Director, Holly Springs Station
G. B. WALKER	Assistant Director, Delta Station

*In co-operation with U. S. Department of Agriculture.

•

INTRODUCTION

In this bulletin are given the results from some of the cotton experiments for 1914 from the Central Station at the A. and M. College and two of the branch stations; namely, the Holly Springs Branch Station at Holly Springs, Miss., and the Delta Branch Station at Stoneville, Miss.

The results from similar cotton experiments previous to 1914 are published in Bulletins 155, 161, and 164. These bulletins may be had upon application to the Director of the Experiment Station, Agricultural College, Mississippi.

> **RESULTS FROM THE CENTRAL STATION.** By E. C. EWING AND J. R. RICKS.

TABLE	1.—1en	nperature	s and Rai	ntall, 1914	1. ·	
		1 EMPERA	TURES.		RAINFAL	L.
MONTH.	Mini- mum.	Average Mini- mum.	Maxi- mum.	Average Maxi- mum.	Total rainfall inches.	No. of day on which rain fell.
January	26	36.5	75	57.4	1.05	4
February	20	35	73	56.5	4.22	10
March	23	41.2	82	62.4	6.19	13
April	31	52.4	88	75.6	5.46	9
May	47	60	98	84.4	2.15	7
June	68	72.3	103	96.9	5.06	6
July	65	72	103	96.5	.85	6
August	64	70.5	96	91	7.37	18
September	53	63.8	95	87	7.10	7
October	29	56	88	77	2.00	12
November	15	41.8	85	61	3.00	7
December	13	34.8	69	48.6	6.47	15
Total rainfall					50.92	114

THE WEATHER.

TABLE 1 .- Temperatures and Rainfall, 1914.

VARIETY TEST.

In Table 2 are shown the results of comparative field tests with sixteen varieties supposed to have been the most promising varieties of their respective classes. The first four are early short staple varieties; the next eight are medium early, big bolled, short staple varieties; and the last four are long staple varieties. The table shows the yields of seed and lint made by each variety under the same conditions and the value per acre of these products at market prices. The samples were classed at Greenville, Miss., on November 5, 1914, and the values are based on the market of that date. The samples of each variety were considered as being of strict middling grade and the values assigned are the prices that were being paid for each of the different lengths of staple in strict middling grade at that time.

On the whole the medium early, big bolled varieties made the best yields, but some of the long staple varieties returned the greatest money values per acre, due to the premiums paid for these staples at that time.

This field was infested from the first to the last of the season with boll weevils, which did a moderate amount of damage. The weevils were controlled to a considerable extent by picking the adult weevils and the squares and to a large extent by the hot dry weather which occurred in June and July. This cotton was planted April 20th and 21st and got an early start. Boll weevils appeared in considerable numbers early in the season. As soon as squares began to appear and were punctured, these punctured squares were picked and destroyed as were also any adult weevils found. These measures were continued through June and most of July and, together with the effect of the hot dry weather prevailing at that season, permitted a good crop to be made.

Had the weather been rainy and cloudy and had the picking of the punctured squares been relaxed, the relative standing of the varieties would probably have been different and more favorable to the early varieties. The earliest varieties began to square first and as a result were infested first by the weevil. This was a slight disadvantage to them and the artificial and natural control which continued through a large part of the fruiting season was favorable to some of the varieties that are somewhat later. The early maturing varieties have never given the largest yields here without the boll weevil and a dry season is favorable to the medium early big bolled varieties. These varieties have more extensive root systems, are more vigorous in their habits of growth, and are consequently more drouth-resistant. It is our opinion that under average conditions on poor thin land or land of medium fertility, with the boll weevil present, these medium early, big bolled varieties such as Wannamaker-Cleveland, Cook, Half and Half (a selection from Cook), and Miller will give better results than the very early, quick maturing varieties, which suffer worse from drouth and rust and quit growing early under such conditions. Besides, there does not seem to be as much difference in earliness between the earliest and the latest varieties on thin land as there is between the earliest and the latest varieties on rich land. On rich bottom lands in the presence of the boll weevil, one of the early maturing varieties that does not make too much stalk will be the most satisfactory. In this class there are no better varieties than Trice and Dodd's Prolific. In most tests in this State Trice has given better results than Dodd's Prolific.

We regard Express* as the best available long staple variety for boll weevil conditions. It is an early inch and three-sixteenths cotton that has given splendid results in the Delta. Unknown is another good early variety that runs from an inch and an eighth to an inch and threesixteenths.

*See circular on Express Cotton published by this Station for a discussion of this variety.

TABLE 2.-VARIETY TEST AT CENTRAL STATION, 1914.

					TUNT T MITTO		STOTIOTO STOTIO	• + +			
	Seed	Seed	1 otal Seed	Per	Lint	Lenoth	Value	Value of lint.	Seed	Value of seed per	Total value
NAME OF VARIETY.	cotton first	cotton	cotton	cent	per	of	per	per	per	acre at	of lint
	picking.	picking.	acre.	• 1 I I I	acie.	stapte	.punod	acre.	acre.	per ton.	and seed per acre.
1. Trice.	1 _{bs.} 1096	1bs. 347	1bs. 1443	31	447	lnch. 1 f*	Cents. 7 1-4	\$32.40	966	\$5.95	\$38.35
2. Simpkins.	1090	300	1390	34	473	7-8	7	33.10	917	5.50	38.60
3. Simpkins Ideal	987	300	1287	35	450	7-8	7	31.50	837	5.00	36.50
4. Dodd's Prolific.	1187	383	1570	32.2	505	1	7 1-8	36.00	1065	6.40	42.40
5. Wannamaker-Cleveland	789	789	1578	38.4	606	1 f	7 1-4	43.90	972	5.85	49.75
6. Cleveland	549	754	1303	36.3	473	11-16	8 1-4	39.00	830	5.00	44.00
7. Cook's Cook	668	870	1538	38.0	584	3-4	7	40.90	954	5.70	46.60
8. Alabama Cook	982	694	1676	40.0	670	3-4	7	46.90	1006	6.00	52.90
9. Half and Half	896	637	1533	43.9	673	3-4	7	47.10	860	5.15	52.25
10. Triumph	710	740	1450	38.7	561	1 f	7 1-4	40.65	889	5.30	45.95
11. Miller	745	844	1589	36.5	580	1 1-16	8 1-4	47.85	1009	6.05	53.90
12. Express	1168	399	1567	28.2	442	1 1-8 f	11	48.60	1125	6.75	55.35
13. Unknown	824	606	1430	32.5	465	1 1-8	9 1-2	44.20	965	5.80	50.00
14. Durango	610	544	1154	33.0	381	1 1-8 f	11	41.90	773	4.65	46.55
15. Columbia	630	694	1324	32.0	424	1 3-16	12 1-2	53.00	006	5.40	58.40
16. Sunflower	694	528	1222	28.3	346	1 3-8	14 1-2	50.20	876	5.30	55.50
						*Full					

COTTON EXPERIMENTS, 1914

VARIETY TEST ON WILT INFESTED LAND.

During the past three years we have conducted a variety test each season on land that is moderately infested with the cotton wilt disease, or blight. In these we have used a few varieties susceptible to the disease and some of the wilt-resistant varieties, all short staple varieties.

Test of 19	12. YIELD OF LINT
VARIETY.	Per Acre.
Dixie	
Covington-Toole Wilt-resistant.	
Trice	
Peterkin	
Dillon	
Triumph	
1	

Test of 1913.

Dixie	218
Trice	185
Covington-Toole Wilt-resistant	238
	179
~p	

Test of 1914.

Dixie	176
Trice	212
Covington-Toole Wilt-resistant.	206
Simpkins	229
Simpkins	220

In the test of 1912 Dixie, Covington-Toole Wilt-resistant, Peterkin and Dillon are all relatively immune to the disease, while Trice and Triumph are very susceptible. Dixie, Covington-Toole Wilt-resistant, and Dillon have been bred for resistance to this disease and introduced for that quality. In the tests of 1913 and 1914 Dixie and Covington-Toole Wilt-resistant are the resistant varieties and Trice and Simpkins the susceptible varieties.

The soil on which these tests were made is a silt loam. Here the infected plants usually do not die at once from the effects of the disease but most of them continue to develop a fair crop. However, every plant in the rows of susceptible varieties showed some effects of the disease finally, and usually a good many of the plants of the wiltresistant varieties wilted more or less.

Boll weevils did not affect the crop of 1912; they injured it slightly late in the season of 1913; but weevils were present throughout the summer and fall of 1914 and affected the yields considerably.

The wilt-resistant varieties generally gave the best yields in 1912 and 1913 but fell below the susceptible varieties in 1914. This is on account of the effects of the boll weevil. The wilt-resistant varieties are all late and cannot be successfully grown where weevil damage is heavy. At the same time, the early varieties that we have found all seem to be rather susceptible to wilt, so the combination, where both wilt and weevils are present to a serious extent, makes cotton growing out of the question. The Covington-Toole Wilt-resistant variety has yielded more cotton than any of the other wilt-resistant varieties in all tests that have been made with it at this Station.

PLAT.	First picking pounds seed cotton per acre.	Sec. picking pounds seed cotton per acre.	Total yield pounds seed cotton per acre.
3 ft. rows	1536	124	1660
3 ¹ / ₂ ft. rows	1184	152	1336
4 ft. rows	1068	152	1220
4 ¹ / ₂ ft. rows	992	208	1200
5 ft. rows	960	216	1176

DISTANCE EXPERIMENTS.

TABLE 3.-Width of Rows, 1914.

TABLE 4.—Distances in the Drill. 1914.

PLAT	First picking pounds seed cotton per acre.	Sec. picking pounds seed cotton per acre.	Total yield pounds seed cotton per acre.
12 inches	1105	448	1553
24 inches	977	426	1403
36 inches	772	381	1153

In the above plats the rows were four feet apart, and the cotton grew to four feet in height. The variety of cotton was Cleveland Big Boll. The weevils seemed to have gotten all of the squares after the 10th of August. No fight was made on the weevils in these plats.

TABLE 5 .- Manure and Kainit to Prevent Rust. 1914.

PLAT.	First picking pounds seed cotton per acre.	Sec. picking pounds seed cotton per acre.	Total yield pounds seed cotton per acre.
No treatment	476	8	484
Kainit 300 lbs. per acre	1504	228	1732
Manure applied in 1911	1540	268	1808
Manure applied in 1913.	1550	280	1830

These plats were on land on which cotton has always rusted badly. An application of 300 pounds of kainit is almost as good as an application of ten tons of barnyard manure, but the kainit must be added each year whereas the manure lasts for several years, as will be seen in the above plats.

RESULTS FROM THE HOLLY SPRINGS BRANCH EXPERIMENT STATION.

By C. T. Ames.

Remarks.—All of the fertilizer plats planted to cotton in 1914 were planted about as early as the weather would permit in this latitude. The growth of the stalk was below normal. The season was excessively dry, and the yield of cotton was above the average for this section.

Under average conditions the early varieties of cotton should be planted on valley land, and the larger big boll and later varieties should be confined principally to hill land. Cleveland-Wannamaker, Trice, and Cooks are most excellent early short staple varieties. Express is also an excellent early variety with staple 1 3-16 inches in length. Cleveland Big Boll is an early variety, and most excellent for the hill lands of this section.

Fertilizers.—The use of both nitrogen and phosphorus, either alone or in combination, has given very satisfactory results. Phosphorus hastens maturity.

The use of potash, either alone or in combination with the other elements, appears to be unnecessary in these soils.

On thin upland the use of 200 to 300 pounds of an equal mixture of cottonseed meal and acid phosphate per acre, placed about three inches deep under the seed, should give very satisfactory results. On the more fertile soils the quantity of phosphorus may be increased to advantage.

After leguminous crops phosphate alone at the rate of from 200 to 400 pounds per acre can be used to profit.

Where leguminous crops are to be grown, from 300 to 400 pounds of rock floats can be used to advantage. Where rock floats is mixed with manure the results are most satisfactory.

If ten pounds of crimson clover seed were sown, per acre, in cotton after a rain in September and covered with a cultivator, rock floats would supply our fertilizer requirements. HOLLY SPRINGS BRANCH EXPERIMENT STATION-

TABLE 6.--VARIETY TEST WITH COTTON.

Soil.-Brown loam valley. Plats.-One row each, repeated four times. Date of Planting.-April 29, 1914.

	DA	DATES OF	PICKING.	G.	Total	Low	T and the	Pounds	Fornds	Pounds	Value
PLATS.	Sept. 10.	Sept. 28.	Oct. 20.	Nov. 5.	per Plat.	cent lint.	of staple.	per acre Seed cotton.	ot unt per per acre.	or seed per per acre.	or seed and lint per acre.
0. Trice	199 lb	1	0.00	3.0	329.5	31.1	1 1-16	1845.2	573.8	1	\$54 95
	192	131	22	e 2	348	31.7	1 1-16	1948.8	617.7	1331	58.93
2. Simpkins.	178.5		15.7	4.5	332.7	34.8	7-8	1863.1	648.3	-	53.48
	174		14.5	4.5	333	35.1	7-8	1864.8	654.5	-	53.89
4. Dodd's Prolific	208.5		20	ũ	392.7	32.5	1	2199.1	714.6		60.70
5. Cleveland Wannamaker	153		46.5	7.5	424.2	37.5	1	2375.5	890.8		73.47
6. Cleveland Big Boll	118.2		76.2	10.0	437.9	36.5	1 f	2452.2	895	-	74.56
Cook from Cook	101		74.5	8	440.5	38.3	3-4	2464	943.7	-	75.17
8. Cook's Alabama Station	151.5		40	4.5	457.5	40	3-4	2562	1024.8	-	80.95
9. Half and Half	141		26	9.5	411.5	44.2	3-4	2304.4	1018.5	_	78.40
Ŀ,	95		67.5	15.0	366.5	38.5	1	2052.4	790	-	64.84
-	130.5		69.2	<u>о</u>	420.7	36.1	1 1-8	2355.8	850.4		83.82
12. Express	198.5		32	9.5 2	402.5	29.1	1 3-16	2254	655.9	-	92.16
4	125		41.5	14	340.5	32.7	1 3-16	1906.8	623.3		85.59
14. Durango	106.5		42	14	377	33.5	1 3-16	2111.2	202	-	96.79
\sim	81.7		69.5	15.5	373.2	32.5	1 3-16	2089.9	679		93, 33
16. Sunflower.	109.7		69.7	12	385.9	28.7	1 5-16	2161	442		74.40

The following prices were given at Greenville, Miss., Nov. 15, 1914, for strict middling grade: 3-4 inch, 7 cts.; 7-8 inch, 7 1-8 cts.; 1 inch, 7 1-4 cts.; 1 1-16 inch, 8 1-4 cts.; 1 1-8 com., 8 3-4 cts.; 1 1-8 full, 11 cts.; 1 3-16 inch, 12 1-2 cts.; 15-16 inch, 14 1-2 cents. Cotton seed were figured at \$12.00 per ton which was the market price on the above date.

Remarks.--Season dry. Yield above the average. Normal differences between price of short and long staple affected results.

TABLE 7-HOLLY SPRINGS BRANCH EXPERIMENT STATION.

D ate of Planting.—April 29, 1914. Soil.—Rolling hill land, clay loam.

Variety.—Cleveland Big Boll. Plats.—1-20 acre each.

	DATES	DATES OF PICKING.	KING.		Pounds		DATES	DATES OF PICKING.	KING.		Pounds
2001b Fertilizer per Acre.	Sept. 12.	0ct. 6.	Oct. 28. Plat.	Total per plat	or seed Cotton per Acre.	4001b Fertilizer per Acre.	Sept. 12.	0ct. 2.	Oct. 28.	Total per Plat.	Total Cotton per Per Per Plat.
1. No Fertilizer	6.5	15	2	28.5	570 lb	1½. No Fertilizer	5.5	18.5	2	29	580 lb
2. 200fb Cottonseed Meal	11	23	13	47	940	$2\frac{1}{2}$. 400 lb Cottonseed Meal.	6.5	20	2	33.5	670
3. 200 lb Acid Phosphate.	27	27	4.5	58.5	1170	$3.\frac{1}{2}$. 400lb Acid Phosphate	25	39	က	67	1340
4. 200fb Kainit.	11	21	9	38	760	4. ¹ / ₂ . 400 th Kainit	2	21	4	32	640
5. No Fertilizer	8	17.5	2	32.5	650	$5\frac{1}{2}$. No Fertilizer.	0	17	4	21	420
6. 100fb Cottonseed Meal 100fb Acid Phosphate	29.5	23	ۍ ا	55.5	1110	6 ¹ / ₂ . 200 ¹ / _b Cottonseed Meal. 200 ¹ / _b Acid Phosphate	25	38.5	2	65.5	1310
7. 100th Cottonseed Meal 100th Kainit	7.5	21.5	9	38	760	7 ¹ / ₂ . 200 ¹ b Cottonseed Meal.	14.5	33	5.5	53	1060
8. 100 th Acid Phosphate 100 th Kainit.	21.5	22.5	3.5	47.5	950	8½, 2001b Acid Fhosphate 2001b Kainit.	23	27.5	1.5	52	1040

TABLE 7-HOLLY SPRINGS BRANCH EXPERIMENT STATION.-Continued.

20.5 3 47 940	47		940		9½. 240th Acid Phosphate80th Cottonseed Meal.80th Kainit	2	59.5	1190
8.5 15 4.5 28	4.5 2	N .	8	560	10 ¹ / ₂ . No Fertilizer	3	27	540
22.5 21 3 40		4(46.5	930	11 ¹ / ₂ . 300fb Cottonseed Meal.100fb Acid Phosphate25		2.5 64.2	1280
23 4 49		4	6	980	12 ¹ / ₂ 2001b Cottonseed Meal. 17 31	5.5	2.5 50.5	1010
21 6.5 42		42		840	13 ¹ / ₁ . 3001b Acid Phosphate 1001b Cottonseed Meal 17.5 28	1	46.5	930
14 7 27		27		540	14 ⁵ / ₂ . No Fertilizer	1	25	500

Remarks.--All plats were located in the field as indicated in this Table, with only a six foot space between the two sets of plats. Each of the above plats have been fertilized, each year, for the past nine years with the same kind and quantity of fertilizer

as indicated in Table. Past season very dry, with yield a little above the average.

HOLLY SPRINGS BRANCH EXPERIMENT STATION.

TABLE 8.--FERTILIZER TEST WITH COTTON.

Date of Planting.—April 30, 1914. Soff.—Red clay hill land, somewhat irregular in texture and fertility. Plats.—1-20 acre each.

Plat No. Fertilizer.	Yield. No.	Plat No.	FERTILIZER.	Yield. No.	Plat No.	Fertilizer.	Yield.
1. 1000 the Air slacked lime	980 lb	6.	980th 6. 200th Acid Phosphate.	1160lb	11.	1160 lb 11. 200 lb Cotton seed meal	1380 lb
2. No Fertilizer.	·1070	7.	7. 200 Kainit.	1180	12.	1180 12. 200 fb Rock Floats	1210
 100 th Cottonseed Meal 100 th Acid Phosphate 	1080	ø	100 Cottonseed Meal 100 Acid Phosphate 100 Kainit	1270	13.	13. No Fertilizer	1280
4. 2001b Rock Floats.	950	6	9. No Fertilizer.	1280	14.	100 Cottonseed Meal. 100 Acid Phosphate 100 Kainit.	1510
5. 2001b Acid Phosphate	1310	10.	1310 10. 2001b Rock Floats.	1290	15.	15. No Fertilizer	1670

Remarks.--All plats were located in the field as indicated in table. Plats from one to five are on heavy clay soil which changes gradually into a clay loam in plats 11 to 15.

Plat 1 is on the poorest soil, and plat 15 on the most productive.

Plats 5, 10, and 15, were limed at the rate of 2,000th of ground lime stone, and manured at the rate of ten tons of manure, per acre, two years prior to planting in cotton.

MISSISSIPPI EXPERIMENT STATION

HOLLY SPRINGS BRANCH EXPERIMENT STATION. FERTILIZER TEST WITH COTTON.

Date of Planting.—April 29, 1914. Soil.—Rolling hill land, somewhat irregular in fertility. Plats.—1-20 acre each. Variety.—Cleveland Big Boll.

-	DATES OF PICKING.		Total	Pounds of Seed Cotton	
	Sept. 10.	Oct. 2.	Oct. 28.	per Plat.	per Acre.
1. No Fertilizer	3.5	21	5.5	30	600 tb
2. 200 th Cottonseed Meal	14	21.5	7	42.5	850
3. 200th Acid Phosphate	16	19	3	38	760
4. 2001b Kainit	7	11.5	6	24.5	490
5. No Fertilizer	6.5	15	6	27.5	550
6. 2001b Rock Floats	16.5	30	6.5	53	1060
7. 400 th Rock Floats	21.5	29	5	55.5	1110
8. 2001b Acid Phosphate	24	19.5	3.5	47	940
9. 100 th Cottonseed Meal	15	29	9.5	53.5	1070
10. 100 th Cottonseed Meal 200 th Rock Floats	18	30	11.5	59.5	1190
11. No Fertilizer	11.5	16	7	34.5	690
12. 100 th Cottonseed Meal	16	19.5	9	44.5	890
13. 2001b Acid Phosphate	21.5	25.5	5	52	1040
14. 400th Rock Floats	16	25	5.5	46.5	930
15. 2001b Kainit	14.5	26	10	50.5	1010
16. No Fertilizer	8.5	24	10.5	43	860
17. 2001b Rock Floats	11	21.5	8.5	41	820

TABLE 9.—Fertilizer Test with Cotton.

Remarks .--- Plats are located in field as indicated in above table.

RESULTS FROM THE DELTA BRANCH STATION.

By G. B. Walker.

Variety Test.—In the following table we give a list of the varieties of cotton tested at the Delta Branch Station, at Stoneville, in 1914, with data which gives showing made by each variety.

The cotton in this test was planted on May first, but was destroyed by hail storm on May 4th, and was planted a second time on May 20th, but on account of drought which prevailed at that time, a stand was not secured until June 4th.

The land on which the test was made, was of a loamy nature and in rather a low condition, no fertilizer being used.

Owing to the very late date of securing a stand and to a heavy infestation of boll weevil, the yield per acre is very low, but we consider it a very valuable test from a boll weevil standpoint, as the cotton had only about seventy days to grow and set a crop, since no fruit was set after August 10th. Only the very early cottons had any show at all at making a crop.

The boll weevil made its appearance in this field early in July, but did not get numerous enough to take all forms until after August 4th.

Samples of lint from all the varieties were classed and a value placed on them by the O. B. Crittenden Cotton Co., of Greenville, Mississippi, and our calculations are based on information furnished by this firm.

STATION.
2
IIV
T
S
DELTA
LT/
E
H
TEST
E
i.
VARIETY
H
A R
N
õ
[1]
TABLE
AB
H

	Pounds	per	Pounds		Price Ib strict		Value seed	Total value	rotal value Rank as to
	Seed	cent	lint	Length	middling	Value of	per acre	of lint	money
VARIETY.	cotton	of	cotton	of	basis Dec.1	lint per	at \$20.00	and seed	value
	per acre.	lint.	per acre.	staple.	market.	acre.		×	per acre.
Łxpress.	640	27	173	1-3-16	12-1-2	\$21.62	\$ 4.67	\$ 26.29	1
Trice	752	30	225	1-1-16	8	18.00	5.27	23.27	2
Unknown	520	31	161	1-1-8 f	11	17.71	3.59	21.30	အ
Miller	540	35 .	189	1-1-8 c	8-1-2	16.06	3.51	19.57	4
Dodd's Prolific.	600	30	180	1-1-16	8	14.40	4.20	18.60	ũ
Simpkins' Ideal	596	33	196	Short	7	13.72	4.00	17.72	9
Wannamaker-Cleveland.	524	37	195	1	7-1-4	14.14	3.29	17.43	7
Columbia.	360	31	112	1–3-16 f	13	14.56	2.48	17.04	8
Dalrymple	424	36	153	1-1-8 c	8-1-2	13.00	2.71	15.71	6
Cleveland.	480	33	158	1 - 1 - 16	8	12.64	2.22	14.86	10
Half and Half	424	41	174	Short	7	12.18	2.50	14.68	11
Alabama Station Cook	448	38	170	Short	7	11.90	2.78	14.68	12
Cook's Cook	432	36	155	Short	7	10.85	2.77	13.62	13
Sunflower.	320	26	81	1-1-4 f	14	11.34	2.19	13.53	14
Triumph	344	37	127	1-1-16	8	10.15	2.17	12.32	15
Bates.	328	38	125	1	7-1-4	9.06	2.03	11.09	16
Durango	240	31	74	1-1-8 f	11	8.14	1.66	9.80	17

DELTA BRANCH EXPERIMENT STATION.

NAME OF VARIETY.	First row.	Second row.	Total.	Per cent lint.	Yield of lint.
Re-improved King	15.5	16.0	31.5	32.3	10.1
Piedmont	19.0	18.0	37.0	29.7	11.0
Ghoulston's Triumph	10.5	13.5	24.0	31.0	7.3
Stone and Fort Triumph	8.5	10.0	18.5	31.9	5.9
Alabama 6B-97-27	7.0	9.0	16.0	32.4	5.2
Alabama Cleveland 316	9.0	11.5	20.5	34.0	7.0
Alabama Cleveland 323	8.0	7.0	15.0	32.1	4.9
Alabama Cook 675	10.0	12.0	22.0	36.5	8.0
Alabama	7.0	12.0	19.0	33.4	6.8
Jake's Big Boll	12.5	10.0	22.5	33.4	7.5
Wood's Favorite	8.5	10.0	18.5	29.6	5.5
Piedmont Long Staple	8.0	9.0	17.0	27.5	4.7
Willis' Columbia	11.5	13.0	24.5	29.5	7.2
Webber 49	12.0	12.5	24.5	32.4	7.9
28-370	11.5	14.0	25.5	26.5	6.8

TABLE 11.—Second Variety Test, 1914.

The second variety test is a small test conducted on a small scale in which certain varieties are grown in most cases for the first time. A larger test is made every year of the most promising varieties and the results are published in the Station Bulletins. Our object in conducting the smaller test is to get familiar with these new varieties to see whether they justify testing on a larger scale in the regular variety test. Our opinion is based as much on the result of observation in the field as on the figures for final yield, which are not considered as establishing the relative merit of the different kinds because of the small area devoted to the test. They are submitted here, however, to those making inquiry for whatever they may be worth.