1,095 research outputs found

    Rubber Impact on 3D Textile Composites

    Get PDF
    A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools

    Visual tracking for the recovery of multiple interacting plant root systems from X-ray μCT images

    Get PDF
    We propose a visual object tracking framework for the extraction of multiple interacting plant root systems from three-dimensional X-ray micro computed tomography images of plants grown in soil. Our method is based on a level set framework guided by a greyscale intensity distribution model to identify object boundaries in image cross-sections. Root objects are followed through the data volume, while updating the tracker's appearance models to adapt to changing intensity values. In the presence of multiple root systems, multiple trackers can be used, but need to distinguish target objects from one another in order to correctly associate roots with their originating plants. Since root objects are expected to exhibit similar greyscale intensity distributions, shape information is used to constrain the evolving level set interfaces in order to lock trackers to their correct targets. The proposed method is tested on root systems of wheat plants grown in soil

    Carbon related defects in irradiated silicon revisited

    Get PDF
    Electronic structure calculations employing hybrid functionals are used to gain insight into the interaction of carbon (C) atoms, oxygen (O) interstitials, and self-interstitials in silicon (Si). We calculate the formation energies of the C related defects C(i)(Si(I)), C(i)O(i), C(i)C(s), and C(i)O(i)(Si(I)) with respect to the Fermi energy for all possible charge states. The C(i)(Si(I))(2+) state dominates in almost the whole Fermi energy range. The unpaired electron in the C(i)O(i)(+) state is mainly localized on the C interstitial so that spin polarization is able to lower the total energy. The three known atomic configurations of the C(i)C(s) pair are reproduced and it is demonstrated that hybrid functionals yield an improved energetic order for both the A and B-types as compared to previous theoretical studies. Different structures of the C(i)O(i)(Si(I)) cluster result for positive charge states in dramatically distinct electronic states around the Fermi energy and formation energies

    Modelling creativity: identifying key components through a corpus-based approach

    Get PDF
    Creativity is a complex, multi-faceted concept encompassing a variety of related aspects, abilities, properties and behaviours. If we wish to study creativity scientifically, then a tractable and well-articulated model of creativity is required. Such a model would be of great value to researchers investigating the nature of creativity and in particular, those concerned with the evaluation of creative practice. This paper describes a unique approach to developing a suitable model of how creative behaviour emerges that is based on the words people use to describe the concept. Using techniques from the field of statistical natural language processing, we identify a collection of fourteen key components of creativity through an analysis of a corpus of academic papers on the topic. Words are identified which appear significantly often in connection with discussions of the concept. Using a measure of lexical similarity to help cluster these words, a number of distinct themes emerge, which collectively contribute to a comprehensive and multi-perspective model of creativity. The components provide an ontology of creativity: a set of building blocks which can be used to model creative practice in a variety of domains. The components have been employed in two case studies to evaluate the creativity of computational systems and have proven useful in articulating achievements of this work and directions for further research

    Limits on WWZ and WW\gamma couplings from p\bar{p}\to e\nu jj X events at \sqrt{s} = 1.8 TeV

    Get PDF
    We present limits on anomalous WWZ and WW-gamma couplings from a search for WW and WZ production in p-bar p collisions at sqrt(s)=1.8 TeV. We use p-bar p -> e-nu jjX events recorded with the D0 detector at the Fermilab Tevatron Collider during the 1992-1995 run. The data sample corresponds to an integrated luminosity of 96.0+-5.1 pb^(-1). Assuming identical WWZ and WW-gamma coupling parameters, the 95% CL limits on the CP-conserving couplings are -0.33<lambda<0.36 (Delta-kappa=0) and -0.43<Delta-kappa<0.59 (lambda=0), for a form factor scale Lambda = 2.0 TeV. Limits based on other assumptions are also presented.Comment: 11 pages, 2 figures, 2 table

    Search For Heavy Pointlike Dirac Monopoles

    Get PDF
    We have searched for central production of a pair of photons with high transverse energies in ppˉp\bar p collisions at s=1.8\sqrt{s} = 1.8 TeV using 70pb−170 pb^{-1} of data collected with the D\O detector at the Fermilab Tevatron in 1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could rescatter pairs of nearly real photons into this final state via a box diagram. We observe no excess of events above background, and set lower 95% C.L. limits of 610,870,or1580GeV/c2610, 870, or 1580 GeV/c^2 on the mass of a spin 0, 1/2, or 1 Dirac monopole.Comment: 12 pages, 4 figure
    • …
    corecore