15,396 research outputs found

    Local structure of intercomponent energy transfer in homogeneous turbulent shear flow

    Get PDF
    Intercomponent energy transfer by pressure-strain-rate was investigated for homogeneous turbulent shear flow. The rapid and slow parts of turbulent pressure (decomposed according to the influence of the mean deformation rate) are found to be uncorrelated; this finding provides strong justification for current modeling procedure in which the pressure-strain-rate term is split into the corresponding parts. Issues pertinent to scales involved in the intercomponent energy transfer are addressed in comparison with those for the Reynolds-stress and vorticity fields. A physical picture of the energy transfer process is described from a detailed study of instantaneous events of high transfer regions. It was found that the most significant intercomponent energy transfer events are highly localized in space and are imbedded within a region of concentrated vorticity

    The structure of sheared turbulence near a plane boundary

    Get PDF
    An analysis is presented of how a plane boundary affects the structure of turbulence in a sheared free stream. A uniform-shear boundary layer (USBL) is formulated with slip velocity condition at the surface, and inhomogeneous rapid distortion theory is applied. The effects of blocking by the surface on the turbulence structure in USBL is compared with those in the shear-free boundary layer (SFBL). Shear produces highly anisotropic eddies elongated in the flow direction. The vertical velocity variance is reduced with shear at all heights, roughly in proportion to the reduction in the homogeneous value, but the shape of the profile remains unchanged only near the surface. The streamwise integral scales increase with shear, indicating elongation of the streamwise extent of eddies

    Pressure-strain-rate events in homogeneous turbulent shear flow

    Get PDF
    A detailed study of the intercomponent energy transfer processes by the pressure-strain-rate in homogeneous turbulent shear flow is presented. Probability density functions (pdf's) and contour plots of the rapid and slow pressure-strain-rate show that the energy transfer processes are extremely peaky, with high-magnitude events dominating low-magnitude fluctuations, as reflected by very high flatness factors of the pressure-strain-rate. A concept of the energy transfer class was applied to investigate details of the direction as well as magnitude of the energy transfer processes. In incompressible flow, six disjoint energy transfer classes exist. Examination of contours in instantaneous fields, pdf's and weighted pdf's of the pressure-strain-rate indicates that in the low magnitude regions all six classes play an important role, but in the high magnitude regions four classes of transfer processes, dominate. The contribution to the average slow pressure-strain-rate from the high magnitude fluctuations is only 50 percent or less. The relative significance of high and low magnitude transfer events is discussed

    Optical propagation through a homogeneous turbulent shear flow

    Get PDF
    Effects of organized turbulent structures on the propagation of an optical beam in a homogeneous shear flow were studied. A passive-scalar field in a computed turbulent shear flow is used to represent index-of-refraction fluctuations, and phase errors induced in a coherent optical beam by turbulent fluctuations are computed. The organized vortical structures produce a scalar distribution with elongated regions of intense fluctuations which have an inclination with respect to the mean flow similar to that of the characteristic hairpin eddies. It is found that r.m.s. phase error is minimized by propagating approximately normal to the inclined vortical structures. Two-point correlations of vorticity and scalar fluctuation suggest that the regions of intense scalar fluctuation are produced primarily by the hairpin eddies

    Orbital-selective Mass Enhancements in Multi-band Ca2āˆ’x_{2-x}Srx_{x}RuO4_{4} Systems Analyzed by the Extended Drude Model

    Full text link
    We investigated optical spectra of quasi-two-dimensional multi-band Ca2āˆ’x% _{2-x} Srx_{x}RuO4_{4} systems. The extended Drude model analysis on the ab-plane optical conductivity spectra indicates that the effective mass should be enhanced near x=0.5x=0.5. Based on the sum rule argument, we showed that the orbital-selective Mott-gap opening for the dyz/zxd_{yz/zx} bands, the widely investigated picture, could not be the origin of the mass enhancement. We exploited the multi-band effects in the extended Drude model analysis, and demonstrated that the intriguing heavy mass state near x=0.5x=0.5 should come from the renormalization of the dxyd_{xy} band.Comment: 4 figure

    A zinc finger protein array for the visual detection of specific DNA sequences for diagnostic applications.

    Get PDF
    The visual detection of specific double-stranded DNA sequences possesses great potential for the development of diagnostics. Zinc finger domains provide a powerful scaffold for creating custom DNA-binding proteins that recognize specific DNA sequences. We previously demonstrated sequence-enabled reassembly of TEM-1 Ī²-lactamase (SEER-LAC), a system consisting of two inactive fragments of Ī²-lactamase each linked to engineered zinc finger proteins (ZFPs). Here the SEER-LAC system was applied to develop ZFP arrays that function as simple devices to identify bacterial double-stranded DNA sequences. The ZFP arrays provided a quantitative assay with a detection limit of 50ā€‰fmol of target DNA. The method could distinguish target DNA from non-target DNA within 5ā€‰min. The ZFP arrays provided sufficient sensitivity and high specificity to recognize specific DNA sequences. These results suggest that ZFP arrays have the potential to be developed into a simple and rapid point-of-care (POC) diagnostic for the multiplexed detection of pathogens

    NOD2/RICK-dependent Ī²-defensin 2 regulation is protective for nontypeable Haemophilus influenzae-induced middle ear infection.

    Get PDF
    Middle ear infection, otitis media (OM), is clinically important due to the high incidence in children and its impact on the development of language and motor coordination. Previously, we have demonstrated that the human middle ear epithelial cells up-regulate Ī²-defensin 2, a model innate immune molecule, in response to nontypeable Haemophilus influenzae (NTHi), the most common OM pathogen, via TLR2 signaling. NTHi does internalize into the epithelial cells, but its intracellular trafficking and host responses to the internalized NTHi are poorly understood. Here we aimed to determine a role of cytoplasmic pathogen recognition receptors in NTHi-induced Ī²-defensin 2 regulation and NTHi clearance from the middle ear. Notably, we observed that the internalized NTHi is able to exist freely in the cytoplasm of the human epithelial cells after rupturing the surrounding membrane. The human middle ear epithelial cells inhibited NTHi-induced Ī²-defensin 2 production by NOD2 silencing but augmented it by NOD2 over-expression. NTHi-induced Ī²-defensin 2 up-regulation was attenuated by cytochalasin D, an inhibitor of actin polymerization and was enhanced by Ī±-hemolysin, a pore-forming toxin. NOD2 silencing was found to block Ī±-hemolysin-mediated enhancement of NTHi-induced Ī²-defensin 2 up-regulation. NOD2 deficiency appeared to reduce inflammatory reactions in response to intratympanic inoculation of NTHi and inhibit NTHi clearance from the middle ear. Taken together, our findings suggest that a cytoplasmic release of internalized NTHi is involved in the pathogenesis of NTHi infections, and NOD2-mediated Ī²-defensin 2 regulation contributes to the protection against NTHi-induced otitis media

    Optical investigations on Y2āˆ’xBixRu2O7Y_{2-x} Bi_x Ru_2 O_7: Electronic structure evolutions related to the metal-insulator transition

    Full text link
    Optical conductivity spectra of cubic pyrochlore Y2āˆ’xBixRu2O7Y_{2-x} Bi_x Ru_2 O_7 (0.0ā‰¤\leq {\it x}ā‰¤\leq 2.0) compounds are investigated. As a metal-insulator transition (MIT) occurs around {\it x}==0.8, large spectral changes are observed. With increase of {\it x}, the correlation-induced peak between the lower and the upper Hubbard bands seems to be suppressed, and a strong mid-infrared feature is observed. In addition, the pāˆ’dp-d charge transfer peak shifts to the lower energies. The spectral changes cannot be explained by electronic structural evolutions in the simple bandwidth-controlled MIT picture, but are consistent with those in the filling-controlled MIT picture. In addition, they are also similar to the spectral changes of Y2āˆ’x_{2-x}Cax_{x}Ru2_{2}O7_{7} compounds, which is a typical filling-controlled system. This work suggests that, near the MIT, the Ru bands could be doped with the easily polarizable Bi cations.Comment: 5 figure
    • ā€¦
    corecore