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Local Structure of Intercomponent Energy
Transfer in Homogeneous Turbulent Shear Flow

By JAMES G. BRASSEURt AND MOON J. LEE_

Intercomponent energy transfer by pressure-strain-rate was investigated for ho-

mogeneous turbulent shear flow. The rapid and slow parts of turbulent pressure

(decomposed according to the influence of the mean deformation rate) are found

to be uncorrelated; this finding provides strong justification for current modeling

procedure in which the pressure-strain-rate term is split into the corresponding

parts. Issues pertinent to scales involved in the intercomponent energy transfer are

addressed in comparison with those for the Reynolds-stress and vorticity fields. A

physical picture of the energy transfer process is described from a detailed study

of instantaneous events of high transfer regions. It was found that the most signif-

icant intercomponent energy transfer events are highly localized in space and are

imbedded within a region of concentrated vorticity.

1. Introduction

Statistical quantities in turbulent flows have underlying them local, random

events whose dynamical evolution determines the structure of the average. Here,

event refers to a local concentration of a statistical quantity in an instantaneous

turbulent field and significant events are those which provide major contributions

to the average.

The pressure-strain-rate term is the most controversial in current modeling pro-

cedure for the Reynolds-stress transport. The poor understanding of the role played

by pressure in intercomponent energy transfer is in part for want of reliable data

from laboratory measurements of fluctuating pressure. With the advent of super-

computer, 'data' from full turbulence simulations of building-block flows such as

homogeneous turbulence are now available. In this paper, we analyse significant

events associated with the intercomponent energy transfer by interaction between

fluctuating pressure and strain rate in homogeneous turbulent shear flow.

Homogeneous turbulence is chosen for the present study due to the unambiguous

statistical description of intercomponent energy transfer as the correlation between

the fluctuating pressure and strain rate. In this study, we consider those local events

which do not average to zero. Velocity times pressure-gradient, which appears in

the instantaneous Reynolds stress equation, may be written as the sum of transport

and trace-free terms. In homogeneous turbulence, the trace-free term (pressure-

strain-rate) alone survives on the spatial average due to the requirement of the
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translational invariance. In inhomogeneous turbulence, the split of the velocity-

pressure-gradient is not unique (Lumley 1975). We hope to extend the inquiry in

the future to homogeneous turbulence subjected to irrotational mean strains and

to inhomogeneous wall-bounded turbulence.

2. Preliminaries

The transport equation for the Reynolds-stress tensor ui_j in homogeneous tur-

bulence is given by (Lee & Reynolds 1987)

dRij _ Pij + Oij + Tij - Dij (1)
dt

where Pij = -(SikRjk + SjkRik) is the production-rate tensor, Oij = --(f_ikRjk +
2

QjkRik) the kinematic rotation term, Tij = _ _ the pressure-strain-rate term and

Dij = 2 v ui,kUj,k the 'dissipation-rate' tensor (u and p are the fluctuating vector

velocity and pressure, respectively; an overbar denotes a statistical average, repeated

indices imply summation and a comma followed by an index means differentation).

i U _(Ui,j Uj,i) are tile mean strain-rate andHere, Sij = _( i,j -J- Uj,i) and Qij = z

rotation-rate tensors, respectively, and ._ij is the turbulent strain-rate tensor. Notice

that the kinematic rotation and pressure-strain-rate terms are trace-free (Oii : 0

and Tii = 0), and hence they do not contribute to production of the turbulent

kinetic energy. These terms represent intercomponent transfer of turbulent kinetic

energy by the mean rotation rate and by interaction between fluctuating pressure

and strain rate, respectively.

For homogeneous shear flow with mean velocity U = (Sy,0, 0), equations for the

component energy can be written as

d __

--u 2 = - S
dt

d-_ = _ S_-_
dt

d--
--W 2 =
dt

d

dt

- S_-_ + Tll - Dlz,

+ S _-_ + T22 - D22,

+ T33 - D33,

S-- -- S

9.(u, + v,) + 7 - + T,, - D,,,

(2)

where S = dU/dy is the imposed 'shear rate' uniform in space and constant in time._

Turbulent shear flow with unidirectional mean velocity has the characteristic that,

on the average, turbulent kinetic energy is produced by the mean strain rate in

the streamwise component u as much as in the gradient-direction component v

(i.e. Pn = P22 = -S_-_), and the kinematic rotation term rotates the turbulence

structure in the zg-plane by transferring energy -S_-_ from v-component to u-

component. The principal axes of the production-rate tensor are aligned at 45 °

t For notational convenience, we occasionally shift from (zl, z2, za) and (ut, n2, an) to (z, y, z)

and (_, v,w).
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with those of the mean strain-rate tensor, stretching the principal ellipsoid of the

Reynolds-stress tensor, while the kinematic rotation term is perpendicular to the

Reynolds-stress tensor, only tilting the principal ellipsoid.

It is suggested by experimental measurements (Harris, Graham & Corrsin 1977;

Tavoularis & Corrsin 1981) and numerical simulations (Rogallo 1981; Rogers, Moin

& Reynolds 1986; Lee, Kim & Moin 1987) that homogeneous turbulent shear flow

approaches an asymptotic growth state in which most turbulent kinetic energy is

concentrated in the u-component, followed by w, then v. The u-component loses

energy to those in the spanwise (w) and gradient directions (v) through the pressure-

strain-rate correlations: T11 < 0, T22 > 0 and T33 > 0. Examination of the process

by which the pressure-strain-rate redistributes energy between components and

the mechanism by which the spanwise component receives the greater share is the

primary purpose of this study.

The equations for fluctuating momentum flux (uiuj), which lead to (2) on the

average, contain local products of fluctuating pressure and strain rate which by

continuity sum to zero at a point (psii = 0). The pressure-strain-rate term may

therefore be associated with local as well as average intercomponent transfer of

kinetic energy. The role of fluctuating pressure as causing the local transfer of

kinetic energy between components can be observed more clearly in the instanta-

neous Fourier-transformed equations; pressure alters the directional distribution of

the energy associated with individual Fourier modes without modifying their energy

content (Batchelor 1953, §5.2).

The present investigation makes use of the full simulation of homogeneous tur-

bulent shear flow (Rogers el al. 1986). The simulation was carried out by using a

pseudospectral code developed by Rogallo (1981) with periodic boundary conditions

on a grid with 128 × 128 × 128 node points. Run R128 (vid. Rogers et al.) was

analysed for fields at fl = 4 and 8 (_ = St is the total shear). The run was made

by imposing a homogeneous shear rate on an initially isotropic turbulence with an

energy spectrum E(k) of a top-hat profile. As the flow developed, reasonable values

of velocity-derivative skewness were attained and the largest scales approached the

size of the computational domain near _ = 16. The Taylor-microscale Reynolds

number ranged from 43 to 74 for _ = 4-8, and the ratio of turbulence time scale to
1

that of the mean field (Sq2/e where q2 = Rii and e = 5Dii) increased from 5.4 to
8.8 between fl = 4 and 8.

3. Characteristics of rapid and slow pressures

The Poisson equation for fluctuating pressure in homogeneous shear flow

1
-- V2p = 2 S u_,l + ui,juj,i (3)

P

can be decomposed into two parts, rapid and slow pressures:

1 1
-- V2p_ = 2 S u2,1 and - - _72ps = Ui,jUj, i. (4)

P P
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FIGURE 1. The hatched area in the one-eighth (1/8) of the whole computational

domain indicates the xy-plane over which the two-dimensional contours in figures

2, 3 and 5 are displayed. The streamwise extent of this 64 × 64 × 64 subdomain is

twice those in the spanwise and gradient directions.

From this decomposition it is apparent that the rapid pressure responds directly to

the mean velocity gradient, whereas the slow pressure is affected only indirectly by

the mean, via the fluctuating velocity gradients.

In accord with this, the pressure-strain-rate term may be separated into rapid

and slow parts:

Tij + (5)

where

Hit = 2 2- p, sij and _lfij = - pssi-----_. (6)
P P

In Reynolds-stress transport closures (e.g. Launder, Reece & Rodi 1975; Lumley

1978) these terms have been modeled separately, the slow pressure-strain-rate term

typically with a 'return-to-isotropy' model. Order-of-magnitude arguments would

suggest that the slow pressure resides in scales of the same order as the energy-

containing eddies and the rapid pressure in somewhat larger scales, albeit it is not

obvious in what scales the pressure-strain-rate events are likely to reside.

At an earlier time (/3 = 4), the rapid pressure variance p2 is 70% of the complete

pressure variance p-5 and reaches 87% at a later time (/3 = 8), indicating increasingly

dominant contribution of the rapid part to the complete pressure fluctuations._

These figures compare with values in turbulent channel flow (e.g. Kim, Moin&

Moser 1987) of 50% in the sublayer to 30% outside (P. Bradshaw 1987, private

communication). In the homogeneous shear flow, r.m.s, rapid pressure p', dominates

r.m.s, slow pressure p's by a factor of two at both times.

t It has been suggested (P. Bradshaw 1987, private communication) that the term 'complete

pressure' be adopted to describe the sum of rapid and slow pressures to avoid confusion with
either the full pressure (mean plus fluctuating parts) or the total pressure (static plus dynamic

pressures).
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FIGURE 2. Contours of constant pressure on the :cy-plane in figure 1 (/_ = 8): (a)

rapid pressure, p,; (b) slow pressure, p,; (c) complete pressure, p = p, + p,. -_,

negative; .... , positive.
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FIGURE 3. Contours on the zy-plane in figure 1 (fl = 8): (a) fluctuating Reynolds

stress uv (--, negative; .... , positive); (b) fluctuating vorticity magnitude, I ,12.

It was found that the correlation coefficient between the rapid and slow pressures

is very small (0.05 at fl = 4 and 0.002 at fl = 8). Note that this fact provides

strong support for the modeling procedures in which the pressure-strain-rate term

is divided into the rapid and slow parts (Launder et al. 1975; Lumley 1978). Since

the correlation coefficient between the rapid and slow pressures is almost zero, one

would inquire whether they are concentrated in different regions in space.
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/3 //11 _11 T11 1122 _2_ T22 //33 _ss T3s

4 -35.9 -16.8 -52.6 -5.2 17.6 12.4 41.1 -0.8 40.3

8 -29.7 -26.1 -55.8 -4.1 24.3 20.2 33.8 1.7 35.5

/3 = St; Tij = Ilij + Oij where//ij = _ prsij and 4qj = _ psSij.

TABLE 1. Components of pressure-strain-rate in homogeneous shear flow.

To address this question, instantaneous pressure fields were studied in detail.

Figure 1 shows a schematic of an zy-plane (consisting of 64 × 64 data points)

midway in the spanwise z-direction in a 64 × 64 × 64 subdomain where primary

attention is to be paid for the following discussion.t Figures 2(a-c) show contours

of constant rapid, slow and complete pressures at /3 = 8. It is discernible that

variation of rapid pressure is much larger than that of slow pressure. Even more

obvious is the substantial difference in scale. Figure 2(a) (and three-dimensional

contour plots not shown here) illustrates that rapid pressure is roughly constant

in planes perpendicular to the z-axis and the streamwise variation is sinusoidal

with about two wavelengths occupying the whole computational domain. On the

other hand, figure 2(b) shows spotty distribution of slow pressure. Therefore, the

product of this very-large-scale structure of rapid pressure and the much-smaller-

scale slow pressure results in a relatively-small-scale structure with average near

zero: PrPs/(P'rP's) _-- O.

Figures 3(a, b) display contours of constant values of instantaneous Reynolds

stress (uv) and fluctuating vorticity magnitude respectively. Comparison

with figure 2(b) suggests that slow pressure is concentrated in scales of roughly the

same size as tim Reynolds stress. In contrast, vorticity resides in scales considerably

smaller in the transverse and more elongated in the direction of principal axes of

the mean deformation-rate tensor. This is consistent with the observation of Rogers

& Moin (1987) that vorticity concentrates in 'legs' of hairpin-like vortex structures

as they are stretched and rotated by the mean shear.

4. Intercomponent energy transfer processes (events)

Statistical averages of the diagonal components of the rapid, slow and complete

pressure-strain-rate tensor at/3 = 4 and 8 are presented in table 1. Statistically,

the pressure-strain-rate transfers energy out of u (Tll < 0) into v and w (T_2 > 0

and Ts3 > 0); the w-component receives the greater amount (T33 > T_2). The rapid

term removes energy from u at a rate twice that of the slow term at/3 = 4 and

at about the same rate at fl = 8; however, the ratios between components of rapid

transfer rate (//11://22:1133) are nearly the same at both times.

_f Only one-eighth of the whole 128 x 128 x 128 dataset could be processed at a time on an
IRIS workstation used for graphical display at the NASA-Ames Research Center. The strongest
pressure-strain-rate events at/_ -- 8 were observed in and near the plane shown.
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FIGURE 4. Schematic representation of intercomponent energy transfer process by

pressure-strain-rate covariances (fl = 8): (a) rapid transfer; (b) slow transfer. The

directions of energy transfer are those suggested by the statistical averages.

The relative rate of gain or loss of energy in ead_ component is illustrated schemat-

ically in figure 4. On average, both rapid and slow terms remove energy from u.

Most of the net energy received by w is due to the rapid term, whereas the v-

component receives its energy mostly via the slow term (see table 1). This would

suggest, as indicated by the arrows, that the rapid term transfers energy from the

u-component to the w-component (and a little from v to w), but the slow term de-

livers energy from the u-component directly to the v-component. The instantaneous

field, however, shows that this is not the case.

Figures 5(a-c) show contours of constant slow pressure-strain-rate components at

= 8 on the zy-plane illustrated in figure 1. [N.B.: Negative values are contoured

with solid lines and positive with dashed.] It can be observed that intercomponent

energy transfer is highly localized in relatively few strong events.t Two-point cor-

relations (not shown) suggest that the average spatial scale of the rapid transfer

event is roughly twice that of the slow transfer event.

By comparing pressure--strain-rate contours in each of the three components, it

is possible to determine the net sender and net receiver in each energy transfer

event. Four events are identified for this purpose. Events (_) and (_ represent

the greatest contributions to the energy transfer out of the u-component by the

slow term.:_ Event (_) is by far the strongest, reaching peak values twice that

in (_). In this event, most of the energy from the u-component is transferred to

the w-component and only a small amount of energy is transferred from u to v.

Surrounding this event is a region of rather powerful energy transfer from the v-

component into w-component. The w-component therefore receives energy both

from u and v. A similar energy transfer process is seen in event (_), although most

of the u-energy is transferred directly to w, with smaller amounts from u to v and v

t The rise in pslz from zero is exceptionally abrupt. A three-dimensional view of constant ps11-

contours suggests that the transfer of energy from the u-component is concentrated in about ten
primary events scattered within the 64 x 64 x 64 subdomaln.

For the rapid transfer, two other exceptionally strong pressure-strain-rate events exist in addi-
tion to events coinciding with the two slow events.
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FIGURE 5. Contours of slow pressure-strain-rate on the xg-plane in figure I (/3 = 8):

(a) pss11; (b)_ss_Tj..(c_._,s33. , negative; .... , positive. Four significant events
are labeled Ate, B(B), (_ and (_) (see text).
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FIGURE 6. Schematic of the intercomponent energy transfer process as deduced

from the instantaneous pressure-strain-rate field (_ = 8): (a) rapid transfer; (b)

slow transfer. A composite picture (on the right) is developed from sum of the

individual energy transfer processes of the three components.

to w. Therefore, the slow term transfers most of the energy from u to w rather than

to v (as might be implied by figure 4). In addition, a great deal of energy transfer

takes place between v and w, independent of transfer from u. In event ©, for

example, ener_ is transferred directly from the w-component to the v-component,
and in event _ energy flows back and forth between w and v.

Our interpretation of the instantaneous events in the rapid and slow pressure-

strain-rate fields is schematically summarized in figure 6. The slow term transfers

energy from tt primarily to w with a small amount to v, and some energy from v is

transferred to w; however, more energy enters v from w than vice versa. As shown

to the right of figure 6, the net process is an indirect transfer of energy from u

to v through w with significant energy transfer between v and w. The rapid term

moves energy from u again primarily into w. However, there is considerably greater

energy transfer to w from v. The w-component appears to receive a significant

portion of its energy from the v-component, while transferring a lesser amount back

to v. Compared with the slow process, the rapid term to a much greater extent

transfers energy back to u from both v and w. The transfer processes in both rapid

and slow parts are clearly more involved than those inferred from the statistics only

(cf. fig. 4).
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FIGURE 7. Three-dimensional contours of constant vorticity (/3 = 8): (a, b) _v_,

positive (solid contour) and negative (mesh contour); (c, d) w., all negative (solid

contour, higher values of I_=1; mesh contour, lower values). (a, c) side view looking

towards the xy-plane; (b, d) top view looking towards the zz-plane. (Very little

positive _y exists in this region.)
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5. Instantaneous structure of the most significant event

In their study of a sheared Taylor-Green cellular flow, Corrsin & Kollmann (1977)

reported that intercomponent energy transfer from the streamwise to the transverse

components is associated with local stagnation points. To understand the physical

mechanisnas by which the intercomponent energy transfer proceeds in homogeneous

turbulent shear flow, the structure of the velocity field in the neighborhood of

significant energy transfer events was investigated.

Event (_) in figure 5 shows the strongest energy transfer from the streamwise

component in the 64 × 64 × 64 subdomain at fl = 8. Recall that this event is

associated with a region of concentrated vorticity (fig. 3b). Upon close examination,

we found a rather complex three-dimensional vortical structure in which the energy

transfer event is embedded. In the xy-plane of figure 3(b), the fluctuating vorticity

magnitide in event (_) turns out to be all spanwise vorticity wz (w_ and w v are zero

there!), indicative of the existence of a local shear layer. This is confirmed through

three-dimensional contour plots of w_ and w.. near event (_) as shown in figure 7

(very little ,09 exists in this region).

The two vorticity components are viewed looking from the side along the z-axis

at the xy-plane (figs. 7a, c) and looking from the top down at the xz-plane (figs.

7b, d). There exists a sheet of negative spanwise vorticity (w_ < 0) relatively thin

in the y-direction in comparison with its spanwise extent (figs. 7c, d). Surrounding

this sheet-like structure is a region of strong w_ of two tube-like structures, one

with positive and the other with negative streamwise vorticity (figs. 7a, b). The

spanwise separation of the two vortex tubes was estimated to be about 20 viscous

units (V/-_/S), consistent with the typical hairpin vortices observed by R/9_ers &

Moin (1987) in the same flow. The vortical structure in the region of event _ then

appears to consist of the remnants of an inverted hairpin vortex with a local sheet

of spanwise vorticity occupying the region in between.

Notice the gap in the spanwise vorticity shown in figure 7(d). Examination of the

velocity vectors shows the existence of a local stagnation point in this gap, appar-

ently a consequence of the velocity field induced locally by the vortical structure.

Figure 8(a) shows the top view of the three-dimensional region in which psaa is con-

centrated compared with streamwise (fig. 7b) and spanwise vorticity (fig. 7d). The

peak in pala (solid volume) occupies this gap in the wz-field, suggesting the energy

transfer out of the u-component is, for this powerful event, associated with a local

stagnation point, itself associated with neighboring vortical structures embedded

in the turbulent field. Interestingly, instantaneous Reynolds stress (fig. 8b), like

streamwise vorticity, is concentrated in regions which straddle the psll-event.

As we have observed, the structure of high pressure-strain-rate concentration

interacts strongly with coherent vortical structure where the Reynolds-stress ed-

dies are energetic. In view of its importance of the pressure-strain-rate term in

Reynolds-stress transport modeling, it would be of considerable value to investigate

how the intercomponent energy transfer by the pressure-strain-rate takes place in

association with dynamics of the coherent vortical structures.
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FIGURE 8. Three-dimensional contours in top view looking towards the xz-plane

(/3 = 8): (a) pressure-strain-rate, psi1; (b) Reynolds stress, uv. In both plots,

contours shown are all negative (solid contour, higher values in negative; mesh

contour, lower values).
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