2,354 research outputs found

    TBX3 regulates splicing in vivo: a novel molecular mechanism for Ulnar-Mammary Syndrome

    Get PDF
    pre-printTBX3 is a member of the T-box family of transcription factors with critical roles in development, oncogenesis, cell fate, and tissue homeostasis. TBX3 mutations in humans cause complex congenital malformations and Ulnar-mammary syndrome. Previous investigations into TBX3 function focused on its activity as a transcriptional repressor. We used an unbiased proteomic approach to identify TBX3 interacting proteins in vivo and discovered that TBX3 interacts with multiple mRNA splicing factors and RNA metabolic proteins. We discovered that TBX3 regulates alternative splicing in vivo and can promote or inhibit splicing depending on context and transcript. TBX3 associates with alternatively spliced mRNAs and binds RNA directly. TBX3 binds RNAs containing TBX binding motifs, and these motifs are required for regulation of splicing. Our study reveals that TBX3 mutations seen in humans with UMS disrupt its splicing regulatory function. The pleiotropic effects of TBX3 mutations in humans and mice likely result from disrupting at least two molecular functions of this protein: transcriptional regulation and pre-mRNA splicing

    Roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth.

    Get PDF
    Journal ArticleAlthough numerous molecules required for limb bud formation have recently been identified, the molecular pathways that initiate this process and ensure that limb formation occurs at specific axial positions have yet to be fully elucidated. Based on experiments in the chick, Fgf8 expression in the intermediate mesoderm (IM) has been proposed to play a critical role in the initiation of limb bud outgrowth via restriction of Fgf10 expression to the appropriate region of the lateral plate mesoderm. Contrary to the outcome predicted by this model, ablation of Fgf8 expression in the intermediate mesoderm before limb bud initiation had no effect on initial limb bud outgrowth or on the formation of normal limbs. When their expression patterns were first elucidated, both Fgf4 and Fgf8 were proposed to mediate critical functions of the apical ectodermal ridge (AER), which is required for proper limb bud outgrowth. Although mice lacking Fgf4 in the AER have normal limbs, limb development is severely affected in Fgf8 mutants and certain skeletal elements are not produced. By creating mice lacking both Fgf4 and Fgf8 function in the forelimb AER, we show that limb bud mesenchyme fails to survive in the absence of both FGF family members. Thus, Fgf4 is responsible for the partial compensation of distal limb development in the absence of Fgf8. A prolonged period of increased apoptosis, beginning at 10 days of gestation in a proximal-dorsal region of the limb bud, leads to the elimination of enough mesenchymal cells to preclude formation of distal limb structures. Expression of Shh and Fgf10 is nearly abolished in double mutant limb buds. By using a CRE driver expressed in both forelimb and hindlimb ectoderm to inactivate Fgf4 and Fgf8, we have produced mice lacking all limbs, allowing a direct comparison of FGF requirements in the two locations

    Influence of mesodermal Fgf8 on the differentiation of neural crest-derived postganglionic neurons

    Get PDF
    AbstractThe interaction between the cranial neural crest (NC) and the epibranchial placode is critical for the formation of parasympathetic and visceral sensory ganglia, respectively. However, the molecular mechanism that controls this intercellular interaction is unknown. Here we show that the spatiotemporal expression of Fibroblast growth factor 8 (Fgf8) is strategically poised to control this cellular relationship. A global reduction of Fgf8 in hypomorph embryos leads to an early loss of placode-derived sensory ganglia and reduced number of NC-derived postganglionic (PG) neurons. The latter finding is associated with the early loss of NC cells by apoptosis. This loss occurs concurrent with the interaction between the NC and placode-derived ganglia. Conditional knockout of Fgf8 in the anterior mesoderm shows that this tissue source of Fgf8 has a specific influence on the formation of PG neurons. Unlike the global reduction of Fgf8, mesodermal loss of Fgf8 leads to a deficiency in PG neurons that is independent of NC apoptosis or defects in placode-derived ganglia. We further examined the differentiation of PG precursors by using a quantitative approach to measure the intensity of Phox2b, a PG neuronal determinant. We found reduced numbers and immature state of PG precursors emerging from the placode-derived ganglia en route to their terminal target areas. Our findings support the view that global expression of Fgf8 is required for early NC survival and differentiation of placode-derived sensory neurons, and reveal a novel role for mesodermal Fgf8 on the early differentiation of the NC along the parasympathetic PG lineage

    Mesodermal Nkx2.5 is necessary and sufficient for early second heart field development

    Get PDF
    AbstractThe vertebrate heart develops from mesoderm and requires inductive signals secreted from early endoderm. During embryogenesis, Nkx2.5 acts as a key transcription factor and plays essential roles for heart formation from Drosophila to human. In mice, Nkx2.5 is expressed in the early first heart field, second heart field pharyngeal mesoderm, as well as pharyngeal endodermal cells underlying the second heart field. Currently, the specific requirements for Nkx2.5 in the endoderm versus mesoderm with regard to early heart formation are incompletely understood. Here, we performed tissue-specific deletion in mice to dissect the roles of Nkx2.5 in the pharyngeal endoderm and mesoderm. We found that heart development appeared normal after endodermal deletion of Nkx2.5 whereas mesodermal deletion engendered cardiac defects almost identical to those observed on Nkx2.5 null embryos (Nkx2.5−/−). Furthermore, re-expression of Nkx2.5 in the mesoderm rescued Nkx2.5−/− heart defects. Our findings reveal that Nkx2.5 in the mesoderm is essential while endodermal expression is dispensable for early heart formation in mammals

    Heparan sulfate expression in the neural crest is essential for mouse cardiogenesis

    Get PDF
    Impaired heparan sulfate (HS) synthesis in vertebrate development causes complex malformations due to the functional disruption of multiple HS-binding growth factors and morphogens. Here, we report developmental heart defects in mice bearing a targeted disruption of the HS-generating enzyme GlcNAc N-deacetylase/GlcN N-sulfotransferase 1 (NDST1), including ventricular septal defects (VSD), persistent truncus arteriosus (PTA), double outlet right ventricle (DORV), and retroesophageal right subclavian artery (RERSC). These defects closely resemble cardiac anomalies observed in mice made deficient in the cardiogenic regulator fibroblast growth factor 8 (FGF8). Consistent with this, we show that HS-dependent FGF8/FGF-receptor2C assembly and FGF8-dependent ERK-phosphorylation are strongly reduced in NDST1(-/-) embryonic cells and tissues. Moreover, WNT1-Cre/LoxP-mediated conditional targeting of NDST function in neural crest cells (NCCs) revealed that their impaired HS-dependent development contributes strongly to the observed cardiac defects. These findings raise the possibility that defects in HS biosynthesis may contribute to congenital heart defects in humans that represent the most common type of birth defect

    From Your Nose to Your Toes: A Review of Severe Acute Respiratory Syndrome Coronavirus 2 Pandemic‒Associated Pernio

    Get PDF
    Despite thousands of reported patients with pandemic-associated pernio, low rates of seroconversion and PCR positivity have defied causative linkage to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pernio in uninfected children is associated with monogenic disorders of excessive IFN-1 immunity, whereas severe COVID-19 pneumonia can result from insufficient IFN-1. Moreover, SARS-CoV-2 spike protein and robust IFN-1 response are seen in the skin of patients with pandemic-associated pernio, suggesting an excessive innate immune skin response to SARS-CoV-2. Understanding the pathophysiology of this phenomenon may elucidate the host mechanisms that drive a resilient immune response to SARS-CoV-2 and could produce relevant therapeutic targets

    Evaluation of immune responses in HIV infected patients with pleural tuberculosis by the QuantiFERON® TB-Gold interferon-gamma assay

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diagnosis of tuberculous (TB) pleuritis is difficult and better diagnostic tools are needed. New blood based interferon-gamma (IFN-γ) tests are promising, but sensitivity could be low in HIV positive patients. The IFN-γ tests have not yet been validated for use in pleural fluid, a compartment with higher level of immune activation than in blood.</p> <p>Methods</p> <p>The QuantiFERON TB<sup>®</sup>-Gold (QFT-TB) test was analysed in blood and pleural fluid from 34 patients presenting with clinically suspected pleural TB. Clinical data, HIV status and CD4 cell counts were recorded. Adenosine deaminase activity (ADA) analysis and TB culture were performed on pleural fluid.</p> <p>Results</p> <p>The patients were categorised as 'confirmed TB' (n = 12), 'probable TB' (n = 16) and 'non-TB' pleuritis (n = 6) based on TB culture results and clinical and biochemical criteria. The majority of the TB patients were HIV infected (82%). The QFT-TB in pleural fluid was positive in 27% and 56% of the 'confirmed TB' and 'probable TB' cases, respectively, whereas the corresponding sensitivities in blood were 58% and 83%. Indeterminate results in blood (25%) were caused by low phytohemagglutinin (PHA = positive control) IFN-γ responses, significantly lower in the TB patients as compared to the 'non-TB' cases (p = 0.02). Blood PHA responses correlated with CD4 cell count (r = 0.600, p = 0.028). In contrast, in pleural fluid indeterminate results (52%) were caused by high Nil (negative control) IFN-γ responses in both TB groups. Still, the Nil IFN-γ responses were lower than the TB antigen responses (p < 0.01), offering a conclusive test for half of the patients. We did not find any correlation between blood CD4 cell count and IFN-γ responses in pleural fluid.</p> <p>Conclusion</p> <p>The QFT-TB test in blood could contribute to the diagnosis of TB pleuritis in the HIV positive population. Still, the number of inconclusive results is too high to recommend the commercial QFT-TB test for routine use in pleural fluid in a TB/HIV endemic resource-limited setting.</p

    Subclinical thyroid dysfunction and incident diabetes:a systematic review and an individual participant data analysis of prospective cohort studies

    Get PDF
    Objective: Few prospective studies have assessed whether individuals with subclinical thyroid dysfunction are more likely to develop diabetes, with conflicting results. In this study, we conducted a systematic review of the literature and an individual participant data analysis of multiple prospective cohorts to investigate the association between subclinical thyroid dysfunction and incident diabetes.Methods: We performed a systematic review of the literature in Medline, Embase, and the Cochrane Library from inception to February 11, 2022. A two-stage individual participant data analysis was conducted to compare participants with subclinical hypothyroidism and subclinical hyperthyroidism vs euthyroidism at baseline and the adjusted risk of developing diabetes at follow-up.Results: Among 61 178 adults from 18 studies, 49% were females, mean age was 58 years, and mean follow-up time was 8.2 years. At the last available follow-up, there was no association between subclinical hypothyroidism and incidence of diabetes (odds ratio (OR) = 1.02, 95% CI: 0.88-1.17, I2 = 0%) or subclinical hyperthyroidism and incidence of diabetes (OR = 1.03, 95% CI: 0.82-1.30, I2 = 0%), in age- and sex-adjusted analyses. Time-to-event analysis showed similar results (hazard ratio for subclinical hypothyroidism: 0.98, 95% CI: 0.87-1.11; hazard ratio for subclinical hyperthyroidism: 1.07, 95% CI: 0.88-1.29). The results were robust in all sub-group and sensitivity analyses.Conclusions: This is the largest systematic review and individual participant data analysis to date investigating the prospective association between subclinical thyroid dysfunction and diabetes. We did not find an association between subclinical thyroid dysfunction and incident diabetes. Our results do not support screening patients with subclinical thyroid dysfunction for diabetes.Significance statement: Evidence is conflicting regarding whether an association exists between subclinical thyroid dysfunction and incident diabetes. We therefore aimed to investigate whether individuals with subclinical thyroid dysfunction are more prone to develop diabetes in the long run as compared to euthyroid individuals. We included data from 18 international cohort studies with 61 178 adults and a mean follow-up time of 8.2 years. We did not find an association between subclinical hypothyroidism or subclinical hyperthyroidism at baseline and incident diabetes at follow-up. Our results have clinical implications as they neither support screening patients with subclinical thyroid dysfunction for diabetes nor treating them in the hope of preventing diabetes in the future.</p

    Protective Effector Memory CD4 T Cells Depend on ICOS for Survival

    Get PDF
    Memory CD4 T cells play a vital role in protection against re-infection by pathogens as diverse as helminthes or influenza viruses. Inducible costimulator (ICOS) is highly expressed on memory CD4 T cells and has been shown to augment proliferation and survival of activated CD4 T cells. However, the role of ICOS costimulation on the development and maintenance of memory CD4 T cells remains controversial. Herein, we describe a significant defect in the number of effector memory (EM) phenotype cells in ICOS−/− and ICOSL−/− mice that becomes progressively more dramatic as the mice age. This decrease was not due to a defect in the homeostatic proliferation of EM phenotype CD4 T cells in ICOS−/− or ICOSL−/− mice. To determine whether ICOS regulated the development or survival of EM CD4 T cells, we utilized an adoptive transfer model. We found no defect in development of EM CD4 T cells, but long-term survival of ICOS−/− EM CD4 T cells was significantly compromised compared to wild-type cells. The defect in survival was specific to EM cells as the central memory (CM) ICOS−/− CD4 T cells persisted as well as wild type cells. To determine the physiological consequences of a specific defect in EM CD4 T cells, wild-type and ICOS−/− mice were infected with influenza virus. ICOS−/− mice developed significantly fewer influenza-specific EM CD4 T cells and were more susceptible to re-infection than wild-type mice. Collectively, our findings demonstrate a role for ICOS costimulation in the maintenance of EM but not CM CD4 T cells
    • …
    corecore