1,460 research outputs found

    Superconductor-insulator transition in nanowires and nanowire arrays

    Get PDF
    Superconducting nanowires are the dual elements to Josephson junctions, with quantum phase-slip processes replacing the tunneling of Cooper pairs. When the quantum phase-slip amplitude ES is much smaller than the inductive energy EL, the nanowire responds as a superconducting inductor. When the inductive energy is small, the response is capacitive. The crossover at low temperatures as a function of ES/EL is discussed and compared with earlier experimental results. For one-dimensional and two-dimensional arrays of nanowires quantum phase transitions are expected as a function of ES/EL. They can be tuned by a homogeneous magnetic frustration.Comment: 15 pages, 10 figure

    Statistical-mechanical iterative algorithms on complex networks

    Full text link
    The Ising models have been applied for various problems on information sciences, social sciences, and so on. In many cases, solving these problems corresponds to minimizing the Bethe free energy. To minimize the Bethe free energy, a statistical-mechanical iterative algorithm is often used. We study the statistical-mechanical iterative algorithm on complex networks. To investigate effects of heterogeneous structures on the iterative algorithm, we introduce an iterative algorithm based on information of heterogeneity of complex networks, in which higher-degree nodes are likely to be updated more frequently than lower-degree ones. Numerical experiments clarified that the usage of the information of heterogeneity affects the algorithm in BA networks, but does not influence that in ER networks. It is revealed that information of the whole system propagates rapidly through such high-degree nodes in the case of Barab{\'a}si-Albert's scale-free networks.Comment: 7 pages, 6 figure

    Phase-slip flux qubits

    Full text link
    In thin superconducting wires, phase-slip by thermal activation near the critical temperature is a well-known effect. It has recently become clear that phase-slip by quantum tunnelling through the energy barrier can also have a significant rate at low temperatures. In this paper it is suggested that quantum phase-slip can be used to realize a superconducting quantum bit without Josephson junctions. A loop containing a nanofabricated very thin wire is biased with an externally applied magnetic flux of half a flux quantum, resulting in two states with opposite circulating current and equal energy. Quantum phase-slip should provide coherent coupling between these two macroscopic states. Numbers are given for a wire of amorphous niobium-silicon that can be fabricated with advanced electron beam lithography.Comment: Submitted to New Journal of Physics, special issue solid state quantum informatio

    Causal Consistency of Structural Equation Models

    Get PDF
    Complex systems can be modelled at various levels of detail. Ideally, causal models of the same system should be consistent with one another in the sense that they agree in their predictions of the effects of interventions. We formalise this notion of consistency in the case of Structural Equation Models (SEMs) by introducing exact transformations between SEMs. This provides a general language to consider, for instance, the different levels of description in the following three scenarios: (a) models with large numbers of variables versus models in which the `irrelevant' or unobservable variables have been marginalised out; (b) micro-level models versus macro-level models in which the macro-variables are aggregate features of the micro-variables; (c) dynamical time series models versus models of their stationary behaviour. Our analysis stresses the importance of well specified interventions in the causal modelling process and sheds light on the interpretation of cyclic SEMs.Comment: equal contribution between Rubenstein and Weichwald; accepted manuscrip

    The merger of vertically offset quasi-geostrophic vortices

    Get PDF
    We examine the critical merging distance between two equal-volume, equal-potential-vorticity quasi-geostrophic vortices. We focus on how this distance depends on the vertical offset between the two vortices, each having a unit mean height-to-width aspect ratio. The vertical direction is special in the quasi-geostrophic model (used to capture the leading-order dynamical features of stably stratified and rapidly rotating geophysical flows) since vertical advection is absent. Nevertheless vortex merger may still occur by horizontal advection. In this paper, we first investigate the equilibrium states for the two vortices as a function of their vertical and horizontal separation. We examine their basic properties together with their linear stability. These findings are next compared to numerical simulations of the nonlinear evolution of two spheres of potential vorticity. Three different regimes of interaction are identified, depending on the vertical offset. For a small offset, the interaction differs little from the case when the two vortices are horizontally aligned. On the other hand, when the vertical offset is comparable to the mean vortex radius, strong interaction occurs for greater horizontal gaps than in the horizontally aligned case, and therefore at significantly greater full separation distances. This perhaps surprising result is consistent with the linear stability analysis and appears to be a consequence of the anisotropy of the quasi-geostrophic equations. Finally, for large vertical offsets, vortex merger results in the formation of a metastable tilted dumbbell vortex.Publisher PDFPeer reviewe

    Aluminium-oxide wires for superconducting high kinetic inductance circuits

    Get PDF
    We investigate thin films of conducting aluminium-oxide, also known as granular aluminium, as a material for superconducting high quality, high kinetic inductance circuits. The films are deposited by an optimised reactive DC magnetron sputter process and characterised using microwave measurement techniques at milli-Kelvin temperatures. We show that, by precise control of the reactive sputter conditions, a high room temperature sheet resistance and therefore high kinetic inductance at low temperatures can be obtained. For a coplanar waveguide resonator with 1.5\,kΩ\Omega sheet resistance and a kinetic inductance fraction close to unity, we measure a quality factor in the order of 700\,000 at 20\,mK. Furthermore, we observe a sheet resistance reduction by gentle heat treatment in air. This behaviour is exploited to study the kinetic inductance change using the microwave response of a coplanar wave guide resonator. We find the correlation between the kinetic inductance and the sheet resistance to be in good agreement with theoretical expectations.Comment: 16 pages, 7 figure

    Characterizing and Improving Generalized Belief Propagation Algorithms on the 2D Edwards-Anderson Model

    Full text link
    We study the performance of different message passing algorithms in the two dimensional Edwards Anderson model. We show that the standard Belief Propagation (BP) algorithm converges only at high temperature to a paramagnetic solution. Then, we test a Generalized Belief Propagation (GBP) algorithm, derived from a Cluster Variational Method (CVM) at the plaquette level. We compare its performance with BP and with other algorithms derived under the same approximation: Double Loop (DL) and a two-ways message passing algorithm (HAK). The plaquette-CVM approximation improves BP in at least three ways: the quality of the paramagnetic solution at high temperatures, a better estimate (lower) for the critical temperature, and the fact that the GBP message passing algorithm converges also to non paramagnetic solutions. The lack of convergence of the standard GBP message passing algorithm at low temperatures seems to be related to the implementation details and not to the appearance of long range order. In fact, we prove that a gauge invariance of the constrained CVM free energy can be exploited to derive a new message passing algorithm which converges at even lower temperatures. In all its region of convergence this new algorithm is faster than HAK and DL by some orders of magnitude.Comment: 19 pages, 13 figure

    Correlated electron states and transport in triangular arrays

    Full text link
    We study correlated electron states in frustrated geometry of a triangular lattice. The interplay of long range interactions and finite residual entropy of a classical system gives rise to unusual effects in equilibrium ordering as well as in transport. A novel correlated fluid phase is identified in a wide range of densities and temperatures above freezing into commensurate solid phases. The charge dynamics in the correlated phase is described in terms of a height field, its fluctuations, and topological defects. We demonstrate that the height field fluctuations give rise to a ``free'' charge flow and finite dc conductivity. We show that freezing into the solid phase, controlled by the long range interactions, manifests itself in singularities of transport properties.Comment: 19 pages, 10 figure

    Selective darkening of degenerate transitions for implementing quantum controlled-NOT gates

    Full text link
    We present a theoretical analysis of the selective darkening method for implementing quantum controlled-NOT (CNOT) gates. This method, which we recently proposed and demonstrated, consists of driving two transversely-coupled quantum bits (qubits) with a driving field that is resonant with one of the two qubits. For specific relative amplitudes and phases of the driving field felt by the two qubits, one of the two transitions in the degenerate pair is darkened, or in other words, becomes forbidden by effective selection rules. At these driving conditions, the evolution of the two-qubit state realizes a CNOT gate. The gate speed is found to be limited only by the coupling energy J, which is the fundamental speed limit for any entangling gate. Numerical simulations show that at gate speeds corresponding to 0.48J and 0.07J, the gate fidelity is 99% and 99.99%, respectively, and increases further for lower gate speeds. In addition, the effect of higher-lying energy levels and weak anharmonicity is studied, as well as the scalability of the method to systems of multiple qubits. We conclude that in all these respects this method is competitive with existing schemes for creating entanglement, with the added advantages of being applicable for qubits operating at fixed frequencies (either by design or for exploitation of coherence sweet-spots) and having the simplicity of microwave-only operation.Comment: 25 pages, 5 figure
    • …
    corecore