54 research outputs found
Cyr61 Expression is associated with prognosis in patients with colorectal cancer
BACKGROUND: Cysteine-rich 61 (Cyr61), a member of the CCN protein family, possesses diverse functionality in cellular processes such as adhesion, migration, proliferation, and survival. Cyr61 can also function as an oncogene or a tumour suppressor, depending on the origin of the cancer. Only a few studies have reported Cyr61 expression in colorectal cancer. In this study, we assessed the Cyr61 expression in 251 colorectal cancers with clinical follow up. METHODS: We examined Cyr61 expression in 6 colorectal cancer cell lines (HT29, Colo205, Lovo, HCT116, SW480, SW620) and 20 sets of paired normal and colorectal cancer tissues by western blot. To validate the association of Cyr61 expression with clinicopathological parameters, we assessed Cyr61 expression using tissue microarray analysis of primary colorectal cancer by immunohistochemical analysis. RESULTS: We verified that all of the cancer cell lines expressed Cyr61; 2 cell lines (HT29 and Colo205) demonstrated Cyr61 expression to a slight extent, while 4 cell lines (Lovo, HCT116, SW480, SW620) demonstrated greater Cyr61 expression than HT29 and Colo205 cell lines. Among the 20 cases of paired normal and tumour tissues, greater Cyr61 expression was observed in 16 (80%) tumour tissues than in normal tissues. Furthermore, 157 out of 251 cases (62.5%) of colorectal cancer examined in this study displayed strong Cyr61 expression. Cyr61 expression was found to be associated with pN (p = 0.018). Moreover, Cyr61 expression was associated with statistically significant cancer-specific mortality (p = 0.029). The duration of survival was significantly lesser in patients with Cyr61 high expression than in patients with Cyr61 low expression (p = 0.001). These results suggest that Cyr61 expression plays several important roles in carcinogenesis and may also be a good prognostic marker for colorectal cancer. CONCLUSIONS: Our data confirmed that Cyr61 was expressed in colorectal cancers and the expression was correlated with worse prognosis of colorectal cancers
Particulate matter 10 exposure affects intestinal functionality in both inflamed 2D intestinal epithelial cell and 3D intestinal organoid models
BackgroundA growing body of evidence suggests that particulate matter (PM10) enters the gastrointestinal (GI) tract directly, causing the GI epithelial cells to function less efficiently, leading to inflammation and an imbalance in the gut microbiome. PM10 may, however, act as an exacerbation factor in patients with inflamed intestinal epithelium, which is associated with inflammatory bowel disease.ObjectiveThe purpose of this study was to dissect the pathology mechanism of PM10 exposure in inflamed intestines.MethodsIn this study, we established chronically inflamed intestinal epithelium models utilizing two-dimensional (2D) human intestinal epithelial cells (hIECs) and 3D human intestinal organoids (hIOs), which mimic in vivo cellular diversity and function, in order to examine the deleterious effects of PM10 in human intestine-like in vitro models.ResultsInflamed 2D hIECs and 3D hIOs exhibited pathological features, such as inflammation, decreased intestinal markers, and defective epithelial barrier function. In addition, we found that PM10 exposure induced a more severe disturbance of peptide uptake in inflamed 2D hIECs and 3D hIOs than in control cells. This was due to the fact that it interferes with calcium signaling, protein digestion, and absorption pathways. The findings demonstrate that PM10-induced epithelial alterations contribute to the exacerbation of inflammatory disorders caused by the intestine.ConclusionsAccording to our findings, 2D hIEC and 3D hIO models could be powerful in vitro platforms for the evaluation of the causal relationship between PM exposure and abnormal human intestinal functions
Relationship between Vitamin D, Parathyroid Hormone, and Bone Mineral Density in Elderly Koreans
There is controversy regarding definition of vitamin D inadequacy. We analyzed threshold 25-hydroxyvitamin D (25[OH]D) below which intact parathyroid hormone (iPTH) increases, and examined age- and sex-specific changes of 25(OH)D and iPTH, and association of 25(OH)D and iPTH with bone mineral density (BMD) in elderly Koreans. Anthropometric parameters, serum 25(OH)D and iPTH, lumbar spine and femur BMD by dual-energy radiography absorptiometry (DXA) were measured in 441 men and 598 postmenopausal women. iPTH increased below serum 25(OH) of 36.7 ng/mL in men, but failed to reach plateau in women. Femur neck BMD above and below threshold differed when threshold 25(OH)D concentrations were set at 15-27.5 ng/mL in men, and 12.5-20 ng/mL in postmenopausal women. Vitamin D-inadequate individuals older than 75 yr had higher iPTH than those aged ≤ 65 yr. In winter, age-associated iPTH increase in women was steeper than in summer. In conclusion, vitamin D inadequacy threshold cannot be estimated based on iPTH alone, and but other factors concerning bone health should also be considered. Older people seemingly need higher 25(OH)D levels to offset age-associated hyperparathyroidism. Elderly vitamin D-inadequate women in the winter are most vulnerable to age-associated hyperparathyroidism
- …