2,887 research outputs found

    Deep Projective 3D Semantic Segmentation

    Full text link
    Semantic segmentation of 3D point clouds is a challenging problem with numerous real-world applications. While deep learning has revolutionized the field of image semantic segmentation, its impact on point cloud data has been limited so far. Recent attempts, based on 3D deep learning approaches (3D-CNNs), have achieved below-expected results. Such methods require voxelizations of the underlying point cloud data, leading to decreased spatial resolution and increased memory consumption. Additionally, 3D-CNNs greatly suffer from the limited availability of annotated datasets. In this paper, we propose an alternative framework that avoids the limitations of 3D-CNNs. Instead of directly solving the problem in 3D, we first project the point cloud onto a set of synthetic 2D-images. These images are then used as input to a 2D-CNN, designed for semantic segmentation. Finally, the obtained prediction scores are re-projected to the point cloud to obtain the segmentation results. We further investigate the impact of multiple modalities, such as color, depth and surface normals, in a multi-stream network architecture. Experiments are performed on the recent Semantic3D dataset. Our approach sets a new state-of-the-art by achieving a relative gain of 7.9 %, compared to the previous best approach.Comment: Submitted to CAIP 201

    Bayesian molecular clock dating and the divergence times of angiosperms and primates

    Get PDF
    The explosive increase of molecular sequence data has produced unprecedented opportunities for addressing a number of evolutionary problems. Specially, the species divergence time estimation is fundamental because our understanding of history of life depends critically on knowledge of the ages of major clades. This thesis explores the use of molecular data (genome-scale datasets), combined with statistical summaries of the fossil record, to date the origin of angiosperms (flowering plants) and the divergence times of its major groups in an attempt to resolve the apparent conflict between the molecular dates and fossil evidence. Moreover, because fossil calibrations are the major source of information for resolving the distances between molecular sequences into estimates of absolute times and absolute rates in molecular clock dating analysis, several strategies for converting fossil calibrations into the prior on times are evaluated. Chapter one introduces the diversity and evolution of angiosperms, reviews the current literature that is based predominantly on systematics, phylogenetics, palaeobotany and plant molecular evolution. In introducing the early evolution of angiosperms this chapter highlights the questions associated with the origin of angiosperms and presents aims of the thesis. Chapter two focuses on molecular clock dating methods. It discusses different approaches for estimating divergence times, with emphasis on Bayesian molecular clock dating methods. Chapter three uses a powerful Bayesian method to analyze a molecular dataset of 83 genes from 644 taxa of vascular plants, combined with a suite of 52 fully-justified fossil calibrations to disentangle the pattern of angiosperm diversification. The results indicate that crown angiosperms originated during the Triassic to the Jurassic interval, long prior to the Cretaceous Terrestrial Revolution. This analysis demonstrates that even though many sources of uncertainty are explored, attempts to control for these factors still do not bring clock estimates and earliest confident fossil occurrences into agreement. A post-Jurassic origin of angiosperms was rejected, supporting the notion of a cryptic early history of angiosperms. The main factors affecting the estimates in this study are also discussed. Subsequently, in chapter four different strategies for summarizing fossil information to construct calibration priors were assessed employing an a priori procedure for deriving accurate calibration densities in Bayesian divergence dating. In general, truncation has a great impact on calibrations so that the effective priors on the calibration node ages after the truncation can be very different from the user-specified calibration densities. The different strategies for generating the effective prior also had considerable impact, leading to very different marginal effective priors. Arbitrary parameters used to implement minimum-bound calibrations were found to have a strong impact upon the prior and posterior of the divergence times. The results highlight the importance of inspecting the joint time prior used by the dating program before any Bayesian dating analysis. Finally, chapter five draws together key finding from chapters three and four, and reviews how this work advances our understanding of the origin and evolution of angiosperms and on molecular clock dating using fossil calibrations. This chapter also highlights new gaps in our understanding of early evolution of angiosperms and in the implementation of fossil calibrations in Bayesian molecular clock dating, and discusses several areas for future research. Overall, this thesis highlights that more room for improvement might lie in refining our knowledge and use of fossil calibrations, the resulting improvements to molecular estimates of timescales will lead to a better understanding of angiosperm evolution. I speculate that these results will also shed light on dating discrepancies in other major clades

    Overweight and obesity status from the prenatal period to adolescence and its association with non- alcoholic fatty liver disease in young adults: cohort study

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156435/16/bjo16199-sup-0005-ICMJES2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156435/15/bjo16199-sup-0012-ICMJES12.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156435/14/bjo16199_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156435/13/bjo16199-sup-0010-ICMJES10.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156435/12/bjo16199-sup-0002-TableS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156435/11/bjo16199.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156435/10/bjo16199-sup-0007-ICMJES4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156435/9/bjo16199-sup-0008-ICMJES5.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156435/8/bjo16199-sup-0006-ICMJES3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156435/7/bjo16199-sup-0003-AppendixS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156435/6/bjo16199-sup-0011-ICMJES11.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156435/5/bjo16199-sup-0013-ICMJES13.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156435/4/bjo16199-sup-0014-ICMJES14.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156435/3/bjo16199-sup-0001-FigS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156435/2/bjo16199-sup-0009-ICMJES6.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156435/1/bjo16199-sup-0004-ICMJES1.pd

    Exposure of humans to the zoonotic nematode Dirofilaria immitis in Northern Portugal

    Get PDF
    Dirofilariosis caused by Dirofilaria immitis (heartworm) is a zoonosis, considered an endemic disease of dogs and cats in several countries of Western Europe, including Portugal. This study assesses the levels of D. immitis exposure in humans from Northern Portugal, to which end, 668 inhabitants of several districts belonging to two different climate areas (Csa: Bragança, Vila Real and Csb: Aveiro, Braga, Porto, Viseu) were tested for anti-D. immitis and anti-Wolbachia surface proteins (WSP) antibodies. The overall prevalence of seropositivity to both anti-D. immitis and WSP antibodies was 6.1%, which demonstrated the risk of infection with D. immitis in humans living in Northern Portugal. This study, carried out in a Western European country, contributes to the characterisation of the risk of infection with D. immitis among human population in this region of the continent. From a One Health point of view, the results of the current work also support the close relationship between dogs and people as a risk factor for human infectio

    Aquatic community response to volcanic eruptions on the Ecuadorian Andean flank: evidence from the palaeoecological record

    Get PDF
    Aquatic ecosystems in the tropical Andes are under increasing pressure from human modification of the landscape (deforestation and dams) and climatic change (increase of extreme events and 1.5 °C on average temperatures are projected for AD 2100). However, the resilience of these ecosystems to perturbations is poorly understood. Here we use a multi-proxy palaeoecological approach to assess the response of aquatic ecosystems to a major mechanism for natural disturbance, volcanic ash deposition. Specifically, we present data from two Neotropical lakes located on the eastern Andean flank of Ecuador. Laguna Pindo (1°27.132′S–78°04.847′W) is a tectonically formed closed basin surrounded by a dense mid-elevation forest, whereas Laguna Baños (0°19.328′S–78°09.175′W) is a glacially formed lake with an inflow and outflow in high Andean Páramo grasslands. In each lake we examined the dynamics of chironomids and other aquatic and semi-aquatic organisms to explore the effect of thick (> 5 cm) volcanic deposits on the aquatic communities in these two systems with different catchment features. In both lakes past volcanic ash deposition was evident from four large tephras dated to c.850 cal year BP (Pindo), and 4600, 3600 and 1500 cal year BP (Baños). Examination of the chironomid and aquatic assemblages before and after the ash depositions revealed no shift in composition at Pindo, but a major change at Baños occurred after the last event around 1500 cal year BP. Chironomids at Baños changed from an assemblage dominated by Pseudochironomus and Polypedilum nubifer-type to Cricotopus/Paratrichocladius type-II, and such a dominance lasted for approximately 380 years. We suggest that, despite potential changes in the water chemistry, the major effect on the chironomid community resulted from the thickness of the tephra being deposited, which acted to shallow the water body beyond a depth threshold. Changes in the aquatic flora and fauna at the base of the trophic chain can promote cascade effects that may deteriorate the ecosystem, especially when already influenced by human activities, such as deforestation and dams, which is frequent in the high Andes

    Identification of potential therapeutic targets in prostate cancer through a cross-species approach.

    Get PDF
    Genetically engineered mouse models of cancer can be used to filter genome-wide expression datasets generated from human tumours and to identify gene expression alterations that are functionally important to cancer development and progression. In this study, we have generated RNAseq data from tumours arising in two established mouse models of prostate cancer, PB-Cre/PtenloxP/loxP and p53loxP/loxPRbloxP/loxP, and integrated this with published human prostate cancer expression data to pinpoint cancer-associated gene expression changes that are conserved between the two species. To identify potential therapeutic targets, we then filtered this information for genes that are either known or predicted to be druggable. Using this approach, we revealed a functional role for the kinase MELK as a driver and potential therapeutic target in prostate cancer. We found that MELK expression was required for cell survival, affected the expression of genes associated with prostate cancer progression and was associated with biochemical recurrence

    Robustness Through Regime Flips in Collapsing Ecological Networks

    Get PDF
    © 2019, Crown. There has been considerable progress in our perception of organized complexity in recent years. Recurrent debates on the dynamics and stability of complex systems have provided several insights, but it is very difficult to find identifiable patterns in the relationship between complex network structure and dynamics. Traditionally an arena for theoreticians, much of this research has been invigorated by demonstration of alternate stable states in real world ecosystems such as lakes, coral reefs, forests and grasslands. In this work, we use topological connectivity attributes of eighty six ecological networks and link these with random and targeted perturbations, to obtain general patterns of behaviour of complex real world systems. We have analyzed the response of each ecological network to individual, grouped and cascading extinctions, and the results suggest that most networks are robust to loss of specialists until specific thresholds are reached in terms of network geodesics. If the extinctions persist beyond these thresholds, a state change or ‘flip’ occurs and the structural properties are altered drastically, although the network does not collapse. As opposed to simpler or smaller networks, we find larger networks to contain multiple states that may in turn, ensure long-term persistence, suggesting that complexity can endow resilience to ecosystems. The concept of critical transitions in ecological networks and the implications of these findings for complex systems characterized by networks are likely to be profound with immediate significance for ecosystem conservation, invasion biology and restoration ecology.Non

    Toxoplasma gondii infection and liver disease: a case-control study in a Northern Mexican population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infection with the protozoan parasite <it>Toxoplasma gondii </it>may cause liver disease. However, the impact of the infection in patients suffering from liver disease is unknown. Therefore, through a case-control study design, 75 adult liver disease patients attending a public hospital in Durango City, Mexico, and 150 controls from the general population of the same region matched by gender, age, and residence were examined with enzyme-linked immunoassays for the presence of anti-<it>Toxoplasma </it>IgG and anti-<it>Toxoplasma </it>IgM antibodies. Socio-demographic, clinical and behavioral characteristics from the study subjects were obtained.</p> <p>Results</p> <p>Seroprevalence of anti-<it>Toxoplasma </it>IgG antibodies and IgG titers did not differ significantly in patients (10/75; 13.3%) and controls (16/150; 10.7%). Two (2.7%) patients and 5 (3.3%) controls had anti-<it>Toxoplasma </it>IgM antibodies (<it>P </it>= 0.57). Seropositivity to <it>Toxoplasma </it>did not show any association with the diagnosis of liver disease. In contrast, seropositivity to <it>Toxoplasma </it>in patients was associated with consumption of venison and quail meat. <it>Toxoplasma </it>seropositivity was more frequent in patients with reflex impairment (27.8%) than in patients without this impairment (8.8%) (<it>P </it>= 0.05). Multivariate analysis showed that <it>Toxoplasma </it>seropositivity in patients was associated with consumption of sheep meat (OR = 8.69; 95% CI: 1.02-73.71; <it>P </it>= 0.04) and rabbit meat (OR = 4.61; 95% CI: 1.06-19.98; <it>P </it>= 0.04).</p> <p>Conclusions</p> <p>Seropositivity to <it>Toxoplasma </it>was comparable among liver disease patients and controls. Further studies with larger sample sizes are needed to elucidate the association of <it>Toxoplasma </it>with liver disease. Consumption of venison, and rabbit, sheep, and quail meats may warrant further investigation.</p

    Biology, Methodology or Chance? The Degree Distributions of Bipartite Ecological Networks

    Get PDF
    The distribution of the number of links per species, or degree distribution, is widely used as a summary of the topology of complex networks. Degree distributions have been studied in a range of ecological networks, including both mutualistic bipartite networks of plants and pollinators or seed dispersers and antagonistic bipartite networks of plants and their consumers. The shape of a degree distribution, for example whether it follows an exponential or power-law form, is typically taken to be indicative of the processes structuring the network. The skewed degree distributions of bipartite mutualistic and antagonistic networks are usually assumed to show that ecological or co-evolutionary processes constrain the relative numbers of specialists and generalists in the network. I show that a simple null model based on the principle of maximum entropy cannot be rejected as a model for the degree distributions in most of the 115 bipartite ecological networks tested here. The model requires knowledge of the number of nodes and links in the network, but needs no other ecological information. The model cannot be rejected for 159 (69%) of the 230 degree distributions of the 115 networks tested. It performed equally well on the plant and animal degree distributions, and cannot be rejected for 81 (70%) of the 115 plant distributions and 78 (68%) of the animal distributions. There are consistent differences between the degree distributions of mutualistic and antagonistic networks, suggesting that different processes are constraining these two classes of networks. Fit to the MaxEnt null model is consistently poor among the largest mutualistic networks. Potential ecological and methodological explanations for deviations from the model suggest that spatial and temporal heterogeneity are important drivers of the structure of these large networks
    corecore