49 research outputs found

    Maternal Low-Protein Diet or Hypercholesterolemia Reduces Circulating Essential Amino Acids and Leads to Intrauterine Growth Restriction

    Get PDF
    OBJECTIVE—We have examined maternal mechanisms for adult-onset glucose intolerance, increased adiposity, and atherosclerosis using two mouse models for intrauterine growth restriction (IUGR): maternal protein restriction and hypercholesterolemia

    Oxidative Stress and Mitochondrial Functions in the Intestinal Caco-2/15 Cell Line

    Get PDF
    Although mitochondrial dysfunction and oxidative stress are central mechanisms in various pathological conditions, they have not been extensively studied in the gastrointestinal tract, which is known to be constantly exposed to luminal oxidants from ingested foods. Key among these is the simultaneous consumption of iron salts and ascorbic acid, which can cause oxidative damage to biomolecules.The objective of the present work was to evaluate how iron-ascorbate (FE/ASC)-mediated lipid peroxidation affects mitochondrion functioning in Caco-2/15 cells. Our results show that treatment of Caco-2/15 cells with FE/ASC (0.2 mM/2 mM) (1) increased malondialdehyde levels assessed by HPLC; (2) reduced ATP production noted by luminescence assay; (3) provoked dysregulation of mitochondrial calcium homeostasis as evidenced by confocal fluorescence microscopy; (4) upregulated the protein expression of cytochrome C and apoptotic inducing factor, indicating exaggerated apoptosis; (5) affected mitochondrial respiratory chain complexes I, II, III and IV; (6) elicited mtDNA lesions as illustrated by the raised levels of 8-OHdG; (7) lowered DNA glycosylase, one of the first lines of defense against 8-OHdG mutagenicity; and (8) altered the gene expression and protein mass of mitochondrial transcription factors (mtTFA, mtTFB1, mtTFB2) without any effects on RNA Polymerase. The presence of the powerful antioxidant BHT (50 microM) prevented the occurrence of oxidative stress and most of the mitochondrial abnormalities.Collectively, our findings indicate that acute exposure of Caco-2/15 cells to FE/ASC-catalyzed peroxidation produces harmful effects on mitochondrial functions and DNA integrity, which are abrogated by the powerful exogenous BHT antioxidant. Functional derangements of mitochondria may have implications in oxidative stress-related disorders such as inflammatory bowel diseases

    Influence of Maternal Dysmetabolic Conditions During Pregnancy on Cardiovascular Disease

    Get PDF
    Pathogenic factors associated with maternal hypercholesterolemia, obesity, and diabetic conditions during pregnancy influence fetal development and predispose offspring to cardiovascular disease. Animal models have established cause–effect relationships consistent with epidemiological findings in humans and have demonstrated, in principle, that interventions before or during pregnancy can reduce or prevent pathogenic in utero programming. However, little is known about the mechanisms by which maternal dysmetabolic conditions enhance disease susceptibility in offspring. Identification of these mechanisms is rendered more difficult by the fact that programming effects in offspring may be latent and may require conventional risk factors and inherited genetic co-factors to become clinically manifest. Given the increasing prevalence of maternal risk factors, which is expected to lead to a wave of cardiovascular disease in the coming decades, and the length of prospective studies on developmental programming in humans, greater-than-usual emphasis on experimental models and translational studies is necessary

    The mode of administration of total parenteral nutrition and nature of lipid content influence the generation of peroxides and aldehydes

    No full text
    International audienceBackground & aims: The absence of light protection of neonatal total parenteral nutrition (PN) contributes to the generation of 4-hydroxynonenal and peroxides. 4-Hydroxynonenal is suspected to be involved in PN-related liver complications. Aims: To find a practical modality to reduce 4-hydroxynonenal in PN and assess in vivo the impact of PN containing low 4-hydroxynonenal concentration. Methods: Six modalities of delivering PN were compared for the in vitro generation of peroxides and 4-hydroxynonenal: 1) MV-AA-L: light-protected (-L) solution containing multivitamin (MV) mixed with amino acids + dextrose (AA); 2) MV-AA+L: MV-AA without photo-protection (+L); 3) MV-LIP+L: MV mixed with lipid emulsion (LIP). LIP was a)Intralipid20%(R) or b) Omegaven (R). Hepatic markers of oxidative stress (glutathione, F-2 alpha-isoprostanes, GS-HNE) and inflammation (mRNA of TNF-alpha and IL-1) were measured in newborn guinea pigs infused during 4-days with MV-AA+L compounded with Intralipid20%(R) or Omegaven (R). Results: Hydroperoxides and 4-hydroxynonenal were the lowest in MV-AA L and the highest in MV-LIP+L. MV-AA+L with Omegaven (R) was associated with the lowest levels of markers of oxidative stress and inflammation. Conclusion: Compared to Intralipid20%(R), Omegaven (R) reduces oxidative stress associated with PN and prevents liver inflammation. These findings offer an alternative strategy to light protection of PN, which in the clinical setting is a cumbersome modality. (C) 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved

    Apple peel polyphenols and their beneficial actions on oxidative stress and inflammation.

    Get PDF
    UNLABELLED: Since gastrointestinal mucosa is constantly exposed to reactive oxygen species from various sources, the presence of antioxidants may contribute to the body's natural defenses against inflammatory diseases. HYPOTHESIS: To define the polyphenols extracted from dried apple peels (DAPP) and determine their antioxidant and anti-inflammatory potential in the intestine. Caco-2/15 cells were used to study the role of DAPP preventive actions against oxidative stress (OxS) and inflammation induced by iron-ascorbate (Fe/Asc) and lipopolysaccharide (LPS), respectively. RESULTS: The combination of HPLC with fluorescence detection, HPLC-ESI-MS TOF and UPLC-ESI-MS/MS QQQ allowed us to characterize the phenolic compounds present in the DAPP (phenolic acids, flavonol glycosides, flavan-3-ols, procyanidins). The addition of Fe/Asc to Caco-2/15 cells induced OxS as demonstrated by the rise in malondialdehyde, depletion of n-3 polyunsaturated fatty acids, and alterations in the activity of endogenous antioxidants (SOD, GPx, G-Red). However, preincubation with DAPP prevented Fe/Asc-mediated lipid peroxidation and counteracted LPS-mediated inflammation as evidenced by the down-regulation of cytokines (TNF-α and IL-6), and prostaglandin E2. The mechanisms of action triggered by DAPP induced also a down-regulation of cyclooxygenase-2 and nuclear factor-κB, respectively. These actions were accompanied by the induction of Nrf2 (orchestrating cellular antioxidant defenses and maintaining redox homeostasis), and PGC-1α (the "master controller" of mitochondrial biogenesis). CONCLUSION: Our findings provide evidence of the capacity of DAPP to reduce OxS and inflammation, two pivotal processes involved in inflammatory bowel diseases

    Sar1b transgenic male mice are more susceptible to high-fat diet-induced obesity, insulin insensitivity and intestinal chylomicron overproduction

    No full text
    International audienceIn the intracellular secretory network, nascent proteins are shuttled from the endoplasmic reticulum to the Golgi by transport vesicles requiring Sar1b, a small GTPase. Mutations in this key enzyme impair intestinal lipid transport and cause chylomicron retention disease. The main aim of this study was to assess whether Sar1b overexpression under a hypercaloric diet accelerated lipid production and chylomicron (CM) secretion, thereby inducing cardiometabolic abnormalities. To this end, we generated transgenic mice overexpressing human Sar1b (Sar1b(+/+)) using pBROAD3-mcs that features the ubiquitous mouse ROSA26 promoter. In response to a high-fat diet (HFD), Sar1b(+/+) mice displayed significantly increased body weight and adiposity compared with Sar1b(+/+) mice under the same regimen or with wild-type (WT) mice exposed to chow diet or HFD. Furthermore, Sar1b(+/+) mice were prone to liver steatosis as revealed by significantly elevated hepatic triglycerides (TG) and cholesterol in comparison with WT animals. They also exhibited augmented levels of plasma TG along with alterations in fatty acid composition. Concomitantly, they showed susceptibility to develop insulin insensitivity and they responded abnormally to oral glucose tolerance test. Finally, Sar1b(+/+) mice that have been treated with Triton WR-1330 (to inhibit TG catabolism) and orotic acid (to block secretion of very low-density lipoprotein by the liver) responded more efficiently to fat meal tests as reflected by the rise in plasma TG and CM concentrations, indicating exaggerated intestinal fat absorption. These results suggest that Sar1b(+/+) under HFD can elicit cardiometabolic traits as revealed by incremental weight gain, fat deposition, dyslipidemia, hepatic steatosis, insulin insensitivity and intestinal fat absorption

    Heterogeneity of fractionated procyanidin oligomers and polymers of DAPP on normal-Phase HPLC.

    No full text
    <p>The procyanidin composition of DAPP from 25 mg/mL crude extract (AB powder) and purified fraction (JC-047) was analyzed by normal phase analytical HPLC using an Agilent 1260/1290 Infinity system coupled to a fluorescence detector. Individual procyanidins with degrees of polymerization (DP) from DP1 to DP>10 were quantified using external calibration curve of (−)-epicatechin, taking into account their relative response factors in fluorescence. The results were expressed as mg/100 g of extract weight ± SEM. *<i>P</i><0.05, ***<i>P</i><0.001 vs. AB powder.</p
    corecore