41 research outputs found

    Biophysical Assessment of Single Cell Cytotoxicity: Diesel Exhaust Particle-Treated Human Aortic Endothelial Cells

    Get PDF
    Exposure to diesel exhaust particles (DEPs), a major source of traffic-related air pollution, has become a serious health concern due to its adverse influences on human health including cardiovascular and respiratory disorders. To elucidate the relationship between biophysical properties (cell topography, cytoskeleton organizations, and cell mechanics) and functions of endothelial cells exposed to DEPs, atomic force microscope (AFM) was applied to analyze the toxic effects of DEPs on a model cell line from human aortic endothelial cells (HAECs). Fluorescence microscopy and flow cytometry were also applied to further explore DEP-induced cytotoxicity in HAECs. Results revealed that DEPs could negatively impair cell viability and alter membrane nanostructures and cytoskeleton components in a dosage- and a time-dependent manner; and analyses suggested that DEPs-induced hyperpolarization in HAECs appeared in a time-dependent manner, implying DEP treatment would lead to vasodilation, which could be supported by down-regulation of cell biophysical properties (e.g., cell elasticity). These findings are consistent with the conclusion that DEP exposure triggers important biochemical and biophysical changes that would negatively impact the pathological development of cardiovascular diseases. For example, DEP intervention would be one cause of vasodilation, which will expand understanding of biophysical aspects associated with DEP cytotoxicity in HAECs

    Particulate air pollution, systemic oxidative stress, inflammation, and atherosclerosis

    Get PDF
    Air pollution has been associated with significant adverse health effects leading to increased overall morbidity and mortality of worldwide significance. Epidemiological studies have shown that the largest portion of air pollution-related mortality is due to cardiovascular diseases, predominantly those of ischemic nature. Human studies suggest an association with atherosclerosis and increasing experimental animal data support that this association is likely to be causal. While both gasses and particles have been linked to detrimental health effects, more evidence implicates the particulate matter (PM) components as major responsible for a large portion of the proatherogenic effects. Multiple experimental approaches have revealed the ability of PM components to trigger and/or enhance free radical reactions in cells and tissues, both ex vivo as well as in vivo. It appears that exposure to PM leads to the development of systemic prooxidant and proinflammatory effects that may be of great importance in the development of atherosclerotic lesions. This article reviews the epidemiological studies, experimental animal, and cellular data that support the association of air pollutants, especially the particulate components, with systemic oxidative stress, inflammation, and atherosclerosis. It also reviews the use of transcriptomic studies to elucidate molecular pathways of importance in those systemic effects

    New spectral positional invariance approach for superresolution of point-type targets embedded in colored noise

    No full text
    A new technique is proposed for high-resolution spectral estimation of point-type targets in multi-grade background scenes. All existing spectral estimation methods operating with short data lengths face the contradiction of providing superresolution of the spectral components related to distinct signal sources, and the smoothed reconstruction of the spectral shape of the extended component as a whole. The method addressed here implies considering the spectrum estimation problem under two paradigms: (i) the Prony estimation of the point-type targets; (ii) the nonparametric maximum entropy estimation applied to reconstruct the image of the background scene. By fusing these two methods, we achieve a substantial improvement in resolutions of point-type targets as well as the background spectral characterization

    Titanium dioxide nanoparticles induce the expression of early and late receptors for adhesion molecules on monocytes

    No full text
    BACKGROUND: There is growing evidence that exposure to titanium dioxide nanoparticles (TiO(2) NPs) could be harmful. Previously, we have shown that TiO(2) NPs induces endothelial cell dysfunction and damage in glial cells. Considering that inhaled particles can induce systemic effects and the evidence that nanoparticles may translocate out of the lungs, we evaluated whether different types of TiO(2) NPs can induce the expression of receptors for adhesion molecules on monocytes (U937 cell line). We evaluated the role of reactive oxygen spices (ROS) on these effects. METHODS: The expression of receptors for early (sLe(x) and PSGL-1) and late (LFA-1, VLA-4 and αVβ3) adhesion molecules was evaluated in U937 cells on a time course (3–24 h) using a wide range of concentrations (0.001-100 μg/mL) of three types of TiO(2) NPs (<25 nm anatase, 50 nm anatase-rutile or < 100 nm anatase). Cells exposed to TNFα were considered positive controls, and unexposed cells, negative controls. In some experiments we added 10 μmolar of N-acetylcysteine (NAC) to evaluate the role of ROS. RESULTS: All tested particles, starting at a concentration of 0.03 μg/mL, induced the expression of receptors for early and late adhesion molecules. The largest increases were induced by the different molecules after 3 h of exposure for sLe(x) and PSGL-1 (up to 3-fold of the positive controls) and after 18 h of exposure for LFA-1, VLA-4 and αVβ3 (up to 2.5-fold of the positive controls). Oxidative stress was observed as early as 10 min after exposure, but the maximum peak was found after 4 h of exposure. Adhesion of exposed or unexposed monocytes to unexposed or exposed endothelial cells was tested, and we observed that monocytes cells adhere in similar amounts to endothelial cells if one of the two cell types, or both were exposed. When NAC was added, the expression of the receptors was inhibited. CONCLUSIONS: These results show that small concentrations of particles may activate monocytes that attach to endothelial cells. These results suggest that distal effects can be induced by small amounts of particles that may translocate from the lungs. ROS play a central role in the induction of the expression of these receptors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12989-016-0147-3) contains supplementary material, which is available to authorized users
    corecore