225 research outputs found
Recommended from our members
Status of (US) High Energy Physics Networking
The current status of Networking to and between computers used by the High Energy Physics community is discussed. Particular attention is given to developments over the last year and to future prospects. Comparison between the current status and that of two years ago indicates that considerable strides have been made but that much remains to be done to achieve an acceptable level of functionality
Overview of results from the Fermilab fixed target and collider experiments
In this paper we present a review of recent QCD related results from Fermilab fixed target and collider experiments. Topics covered range from structure functions through W/Z production, heavy quark production and jet angular distributions. We also include the current state of knowledge about leptoquark pair production in hadronic collisions
Geometric phases in discrete dynamical systems
In order to study the behaviour of discrete dynamical systems under adiabatic
cyclic variations of their parameters, we consider discrete versions of
adiabatically-rotated rotators. Paralleling the studies in continuous systems,
we generalize the concept of geometric phase to discrete dynamics and
investigate its presence in these rotators. For the rotated sine circle map, we
demonstrate an analytical relationship between the geometric phase and the
rotation number of the system. For the discrete version of the rotated rotator
considered by Berry, the rotated standard map, we further explore this
connection as well as the role of the geometric phase at the onset of chaos.
Further into the chaotic regime, we show that the geometric phase is also
related to the diffusive behaviour of the dynamical variables and the Lyapunov
exponent
Electron correlation energy in confined two-electron systems
Radial, angular and total correlation energies are calculated for four
two-electron systems with atomic numbers Z=0-3 confined within an impenetrable
sphere of radius R. We report accurate results for the non-relativistic,
restricted Hartree-Fock and radial limit energies over a range of confinement
radii from 0.05 - 10 a0. At small R, the correlation energies approach limiting
values that are independent of Z while at intermediate R, systems with Z > 1
exhibit a characteristic maximum in the correlation energy resulting from an
increase in the angular correlation energy which is offset by a decrease in the
radial correlation energy
Biological life-history and farming scenarios of marine aquaculture to help reduce wild marine fishing pressure
Aquaculture (freshwater and marine) has largely supplemented fisheries, but in theory could help reduce fishing pressure on wild stocks. Although not the sole factors, some potential benefits depend on aquaculture pressures on fished species, including collection of wild âseedâ materialâearlier to later life stagesâfor rearing in captivity and the capacity of aquaculture to increase. Here we first classify 203 marine (saltwater and brackish) animal species as being produced by either open-cycle capture-based aquaculture (CBA) or closed-cycle domesticated aquaculture (DA)âbased on their likely reliance on wild seedâand assess the extent to which these forms of aquaculture could support seafood production and greater wild biomass. Using a data-limited modelling approach, we find evidence that current aquaculture practices are not necessarily helping reduce fishing to sustainable levels for their wild counterpartsâconsistent with emerging scientific research. However, if some wild capture species (87 equivalent spp.) were instead produced through CBA, almost a million extra tonnes could theoretically be left in the wild, without reducing seafood production. Alternatively, if reliance on wild seed inputs is further reduced by shifting to DA production, then a little less than doubling of aquaculture of the overexploited species in our study could help fill the âproduction gapâ to support fishing at maximum sustainable levels. While other ecological (e.g. escapes), social and economic considerations (e.g. market substitution) are important, we focused on a critical biological linkage between wild fisheries and aquaculture that provides another aspect on how to improve management alignment of the sectors
On two superintegrable nonlinear oscillators in N dimensions
We consider the classical superintegrable Hamiltonian system given by
, where U
is known to be the "intrinsic" oscillator potential on the Darboux spaces of
nonconstant curvature determined by the kinetic energy term T and parametrized
by {\lambda}. We show that H is Stackel equivalent to the free Euclidean
motion, a fact that directly provides a curved Fradkin tensor of constants of
motion for H. Furthermore, we analyze in terms of {\lambda} the three different
underlying manifolds whose geodesic motion is provided by T. As a consequence,
we find that H comprises three different nonlinear physical models that, by
constructing their radial effective potentials, are shown to be two different
nonlinear oscillators and an infinite barrier potential. The quantization of
these two oscillators and its connection with spherical confinement models is
briefly discussed.Comment: 11 pages; based on the contribution to the Manolo Gadella Fest-60
years-in-pucelandia, "Recent advances in time-asymmetric quantum mechanics,
quantization and related topics" hold in Valladolid (Spain), 14-16th july
201
Generalized thermodynamics and Fokker-Planck equations. Applications to stellar dynamics, two-dimensional turbulence and Jupiter's great red spot
We introduce a new set of generalized Fokker-Planck equations that conserve
energy and mass and increase a generalized entropy until a maximum entropy
state is reached. The concept of generalized entropies is rigorously justified
for continuous Hamiltonian systems undergoing violent relaxation. Tsallis
entropies are just a special case of this generalized thermodynamics.
Application of these results to stellar dynamics, vortex dynamics and Jupiter's
great red spot are proposed. Our prime result is a novel relaxation equation
that should offer an easily implementable parametrization of geophysical
turbulence. This relaxation equation depends on a single key parameter related
to the skewness of the fine-grained vorticity distribution. Usual
parametrizations (including a single turbulent viscosity) correspond to the
infinite temperature limit of our model. They forget a fundamental systematic
drift that acts against diffusion as in Brownian theory. Our generalized
Fokker-Planck equations may have applications in other fields of physics such
as chemotaxis for bacterial populations. We propose the idea of a
classification of generalized entropies in classes of equivalence and provide
an aesthetic connexion between topics (vortices, stars, bacteries,...) which
were previously disconnected.Comment: Submitted to Phys. Rev.
Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV
We report the results of a study of color coherence effects in ppbar
collisions based on data collected by the D0 detector during the 1994-1995 run
of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8
TeV. Initial-to-final state color interference effects are studied by examining
particle distribution patterns in events with a W boson and at least one jet.
The data are compared to Monte Carlo simulations with different color coherence
implementations and to an analytic modified-leading-logarithm perturbative
calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters
- âŠ