1,925 research outputs found

    Alternative symplectic structures for SO(3,1) and SO(4) four-dimensional BF theories

    Full text link
    The most general action, quadratic in the B fields as well as in the curvature F, having SO(3,1) or SO(4) as the internal gauge group for a four-dimensional BF theory is presented and its symplectic geometry is displayed. It is shown that the space of solutions to the equations of motion for the BF theory can be endowed with symplectic structures alternative to the usual one. The analysis also includes topological terms and cosmological constant. The implications of this fact for gravity are briefly discussed.Comment: 13 pages, LaTeX file, no figure

    Feedback-limited Accretion: Luminous Signatures from Growing Planets

    Full text link
    Planets form in discs of gas and dust around stars, and keep growing by accretion of disc material while available. Massive planets clear a gap in that protoplanetary disc, but still accrete through spiral wakes. On its way to the planet, the gas will settle on a \emph{circumplanetary} disc around the planet and slowly accrete on to it. The energy of the accreted gas will be released, heating the planet surroundings in a feedback process. For high enough accretion rates the planet should be detectable at infrared wavelengths. We aim to find whether detectable planet luminosities, 103L\gtrsim 10^{-3} \, \textrm{L}_\odot, can occur when considering that the planet luminosity is coupled to the accretion, and also to study which other effects has the feedback on the dynamics of the circumplanetary and the gap regions. We model a planet with mass ratio q=103q=10^{-3}, orbiting at 10 AU from a solar mass star, using a modified version of the 2D code FARGO-AD, which includes a prescription for the accretion and feedback luminosity of the planet. We find that the planetary feedback is able to partially deplete the circumplanetary disc, and to reduce the accretion rate onto the planet. However, detectable luminosities of Lp103LL_\textrm{p}\gtrsim 10^{-3}\, \textrm{L}_\odot are still produced. The feedback also contributes to partially refilling the gap, to heat up the coorbital region, and to perturb the orbital velocity of the gas.Comment: Submitted to MNRA

    Searching for signatures of planet formation in stars with circumstellar debris discs

    Get PDF
    (Abridged) Tentative correlations between the presence of dusty debris discs and low-mass planets have been presented. In parallel, detailed chemical abundance studies have reported different trends between samples of planet and non-planet hosts. We determine in a homogeneous way the metallicity, and abundances of a sample of 251 stars including stars with known debris discs, with debris discs and planets, and only with planets. Stars with debris discs and planets have the same [Fe/H] behaviour as stars hosting planets, and they also show a similar -Tc trend. Different behaviour in the -Tc trend is found between the samples of stars without planets and the samples of planet hosts. In particular, when considering only refractory elements, negative slopes are shown in cool giant planet hosts, whilst positive ones are shown in stars hosting low-mass planets. Stars hosting exclusively close-in giant planets show higher metallicities and positive -Tc slope. A search for correlations between the -Tc slopes and the stellar properties reveals a moderate but significant correlation with the stellar radius and as well as a weak correlation with the stellar age. The fact that stars with debris discs and stars with low-mass planets do not show neither metal enhancement nor a different -Tc trend might indicate a correlation between the presence of debris discs and the presence of low-mass planets. We extend results from previous works which reported differences in the -Tc trends between planet hosts and non hosts. However, these differences tend to be present only when the star hosts a cool distant planet and not in stars hosting exclusively low-mass planets.Comment: Accepted for publication in Astronomy and Astrophysic

    Real sector of the nonminimally coupled scalar field to self-dual gravity

    Get PDF
    A scalar field nonminimally coupled to gravity is studied in the canonical framework, using self-dual variables. The corresponding constraints are first class and polynomial. To identify the real sector of the theory, reality conditions are implemented as second class constraints, leading to three real configurational degrees of freedom per space point. Nevertheless, this realization makes non-polynomial some of the constraints. The original complex symplectic structure reduces to the expected real one, by using the appropriate Dirac brackets. For the sake of preserving the simplicity of the constraints, an alternative method preventing the use of Dirac brackets, is discussed. It consists of converting all second class constraints into first class by adding extra variables. This strategy is implemented for the pure gravity case.Comment: Latex file, 22 pages, no figure

    Heegaard diagrams and surgery descriptions for twisted face-pairing 3-manifolds

    Full text link
    The twisted face-pairing construction of our earlier papers gives an efficient way of generating, mechanically and with little effort, myriads of relatively simple face-pairing descriptions of interesting closed 3-manifolds. The corresponding description in terms of surgery, or Dehn-filling, reveals the twist construction as a carefully organized surgery on a link. In this paper, we work out the relationship between the twisted face-pairing description of closed 3-manifolds and the more common descriptions by surgery and Heegaard diagrams. We show that all Heegaard diagrams have a natural decomposition into subdiagrams called Heegaard cylinders, each of which has a natural shape given by the ratio of two positive integers. We characterize the Heegaard diagrams arising naturally from a twisted face-pairing description as those whose Heegaard cylinders all have integral shape. This characterization allows us to use the Kirby calculus and standard tools of Heegaard theory to attack the problem of finding which closed, orientable 3-manifolds have a twisted face-pairing description.Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol3/agt-3-10.abs.htm

    Linear constraints from generally covariant systems with quadratic constraints

    Full text link
    How to make compatible both boundary and gauge conditions for generally covariant theories using the gauge symmetry generated by first class constraints is studied. This approach employs finite gauge transformations in contrast with previous works which use infinitesimal ones. Two kinds of variational principles are taken into account; the first one features non-gauge-invariant actions whereas the second includes fully gauge-invariant actions. Furthermore, it is shown that it is possible to rewrite fully gauge-invariant actions featuring first class constraints quadratic in the momenta into first class constraints linear in the momenta (and homogeneous in some cases) due to the full gauge invariance of their actions. This shows that the gauge symmetry present in generally covariant theories having first class constraints quadratic in the momenta is not of a different kind with respect to the one of theories with first class constraints linear in the momenta if fully gauge-invariant actions are taken into account for the former theories. These ideas are implemented for the parametrized relativistic free particle, parametrized harmonic oscillator, and the SL(2,R) model.Comment: Latex file, revtex4, 18 pages, no figures. This version includes the corrections to many misprints of v1 and also the ones of the published version. The conceptual and technical parts of the paper are not altere
    corecore