How to make compatible both boundary and gauge conditions for generally
covariant theories using the gauge symmetry generated by first class
constraints is studied. This approach employs finite gauge transformations in
contrast with previous works which use infinitesimal ones. Two kinds of
variational principles are taken into account; the first one features
non-gauge-invariant actions whereas the second includes fully gauge-invariant
actions. Furthermore, it is shown that it is possible to rewrite fully
gauge-invariant actions featuring first class constraints quadratic in the
momenta into first class constraints linear in the momenta (and homogeneous in
some cases) due to the full gauge invariance of their actions. This shows that
the gauge symmetry present in generally covariant theories having first class
constraints quadratic in the momenta is not of a different kind with respect to
the one of theories with first class constraints linear in the momenta if fully
gauge-invariant actions are taken into account for the former theories. These
ideas are implemented for the parametrized relativistic free particle,
parametrized harmonic oscillator, and the SL(2,R) model.Comment: Latex file, revtex4, 18 pages, no figures. This version includes the
corrections to many misprints of v1 and also the ones of the published
version. The conceptual and technical parts of the paper are not altere