297 research outputs found

    The mechanism of iron binding processes in erionite fibres

    Get PDF
    Fibrous erionite-Na from Rome (Oregon, USA) was K-exchanged and characterized from the structural point of view. In addition, the modifications experienced after contact with a Fe(II) source were investigated for evaluating if the large potassium ions, blocking off nearly all the erionite cavity openings, might prevent the Fe(II) binding process, which is currently assumed to be one of the reasons of the toxicity of erionite. The K-exchanged sample had a 95% reduction of the BET surface area indicating that it behaves as a mesoporous material. Exchanged K is segregated at K2 and at OW sites commonly occupied by H2O. The latter K cations provide a relevant contribution to the reduction of the surface area. Surprisingly, despite the collapse of its surface area the sample preserves the tendency to bind Fe(II). Therefore, yet in the case of a peculiar and potentially hostile structural environment the Fe(II) ion-exchange process has essentially the same kinetics observed in a typical erionite sample. This is a clear evidence of the very limited effect of the chemical composition of erionite on the Fe(II) binding process and reasonably it does not play a significant role in its toxicity

    Temperature behavior of optical absorption bands in colored LiF crystals

    Get PDF
    We measured the optical absorption spectra of thermally treated, gamma irradiated LiF crystals, as a function of temperature in the range 16–300 K. The temperature dependence of intensity, peak position and bandwidth of F and M absorption bands were obtained. Keywords: Lithium fluoride, Optical absorption, Low temperature, Color center

    Confocal fluorescence microscopy and confocal raman microspectroscopy of X-ray irradiated LIF crystals

    Get PDF
    Radiation-induced color centers locally produced in lithium fluoride (LiF) are successfully used for radiation detectors. LiF detectors for extreme ultraviolet radiation, soft and hard X-rays, based on photoluminescence from aggregate electronic defects, are currently under development for imaging applications with laboratory radiation sources, as well as large-scale facilities. Among the peculiarities of LiF-based detectors, noteworthy ones are their very high intrinsic spatial resolution across a large field of view, wide dynamic range, and versatility. LiF crystals irradiated with a monochromatic 8 keV X-ray beam at KIT synchrotron light source (Karlsruhe, Germany) and with the broadband white beam spectrum of the synchrotron bending magnet have been investigated by optical spectroscopy, laser scanning confocal microscopy in fluorescence mode, and confocal Raman micro-spectroscopy. The 3D reconstruction of the distributions of the color centers induced by the X-rays has been performed with both confocal techniques. The combination of the LiF crystal capability to register volumetric X-ray mapping with the optical sectioning operations of the confocal techniques has allowed performing 3D reconstructions of the X-ray colored volumes and it could provide advanced tools for 3D X-ray detection

    Different Erionite Species Bind Iron into the Structure: A Potential Explanation for Fibrous Erionite Toxicity

    Get PDF
    In this investigation, the crystal chemical characterization of one sample of woolly erionite-K (Lander County, NV, USA) was examined after suspension in a FeCl2 solution, in anaerobic conditions. The aim of this study was to determine the effect of the chemical composition of erionite on its efficiency to bind iron. Inductively coupled plasma (ICP) results showed that the sample bound Fe(II) through an ion-exchange mechanism mainly involving Ca. In addition, chemical and structural data indicated that Fe(II) is fixed at the Ca3 site, six-fold coordinated to water molecules. According to Brunauer–Emmett–Teller (BET) sample surface area the amount of Fe(II) bound by the fibers was comparable with that retrieved for fibrous erionite-Na sample from Rome (OR, USA) for which the ion-exchange process mainly affected Na. This finding provides clear evidence of a strong tendency of Fe(II) to bind to the erionite structure. Furthermore, considering that the woolly erionite-K from Langer County differs markedly from erionite-Na from Rome in the extra-framework cation content, our observations indicate that the Fe binding efficiency is not significantly modulated by the chemical composition. Notably, Fe ion-exchanged and/or accumulated on the fiber surface can generate hydroxyl radicals via the Fenton reaction, thus influencing the potential carcinogenicity of the different erionite species

    Dimensions and refractive index estimates of deeply buried optical waveguides in Lithium Fluoride

    Get PDF
    A recursive procedure is applied to the measured near-field profiles of buried optical waveguides recorded in a lithium fluoride (LiF) crystal by femtosecond laser pulses in order to estimate the core dimensions and the refractive index increase. Albeit the waveguides transversal section geometry is quite complex it is possible to obtain the horizontal and vertical widths and the average refractive index maximum increase assuming a simplified rectangular transversal section in the simulation. The procedure is validated by comparing the simulated results with the experimental near-field profiles and the maximum refractive index values of two commercial optical fibers. Typical dimensions of ~(8x10)µm² and refractive index changes of ~(2-10)x10-4 were obtained for the LiF waveguides at several wavelengths

    Content, mineral allocation and leaching behavior of heavy metals in urban PM2.5

    Get PDF
    This work provides a novel perspective in the field of urban airborne particle investigation that is not currently found in the literature. Four sampling campaigns were performed in the urban area of Rome (Central Italy) during the winter and summer seasons (February and July 2013 and 2014, respectively). The measured concentrations of the regulated 34 elements of As, Cd, Ni and Pb were consistent with those reported by the local Environmental Agency (ARPA Lazio), but non-regulated heavy metals, including Fe, Cu, Cr and Zn, were also found in PM2.5 and analyzed in detail. As an novelty, heavy metals were associated with the host-identified mineral phases, primarily oxides and alloys, and to a lesser extent, other minerals, such as sulfates, carbonates and silicates. Leaching tests of the collected samples were conducted in a buffered solution mimicking the bodily physiological environment. Despite the highest concentration of heavy metals found during the winter sampling period, all of the elements showed a leaching trend leading to major mobility during the summer period. To explain this result, an interesting comparative analysis between the leaching test behavior and innovative mineral allocation was conducted. Both the heavy metal content and mineral allocation in PM2.5 might contribute to the bioavailability of toxic elements in the pulmonary environment. Hence, for regulatory purposes, the non-linear dependency of heavy metal bioavailability on the total metal content should be taken into account

    Assessment of Trace Metals in Sediments from Khnifiss Lagoon (Tarfaya, Morocco)

    Get PDF
    Surface sediments from Khnifiss lagoon (Morocco) were analyzed to evaluate the contamination degree of the area. Concentrations of V, Cr, Co, Ni, Cu, Zn, As, Cd, Hg, and Pb were determined on samples taken during the summer and the autumn of 2016. On the whole, higher concentrations were found in the summer season. The results revealed the following average concentrations (mg/kg), reported in descending order: Zn (51.7 ± 31.3) > V (38.8 ± 24.7) > Cr (26.6 ± 17.8) > Ni (16.5 ± 5.47) > As (8.50 ± 2.00) > Cu (6.60 ± 3.81) > Pb (6.13 ± 3.46) > Co (3.57 ± 2.09) > Cd (0.16 ± 0.11) > Hg (0.006 ± 0.001). Organic matter showed a positive significant correlation with some trace metals (mainly V, Cr, Co, Zn, Cd, Pb). Three pollution indices were calculated: Enrichment Factor (EF), Index of Geo−accumulation (Igeo), and Pollution Load Index (PLI). Minimal enrichments (for Zn, As, and Cd) were detected at some sampling points. Overall indices showed that the Khnifiss sediments can be classified as not contaminated, and that the trace metals amounts found are ascribable to the geogenic origin. The results of this work can be used as a starting point for further evaluations of trace metals distribution in Moroccan lagoons

    Modelling the Fenton reaction of amphibole asbestos

    Get PDF
    In this work a sample of UICC crocidolite and a sample of fibrous tremolite were leached up to 1 week both in a simplified Gamble’s solution at acidic pH and in a phosphate buffered medium at neutral pH, in presence of H2O2. Surface chemical modifications were monitored by XPS spectroscopy. Subsequently, the generation of HO• radicals following reaction of both pristine and leached fibres with H2O2 (Fenton reaction) was investigated by spin trapping/EPR spectroscopy, with the aim of better clarifying the relationships between possible surface alteration occurring in vivo and chemical reactivity of amphibole asbestos. Moreover, the generation of HO• radicals was monitored on thermally treated fibres after leaching in phosphate buffered medium at neutral pH and in presence of H2O2 to investigate how chemical reactivity may be modulated by Fe oxidation state. Results showed that, for both amphibole asbestos, the surface alteration following incubation in the modified Gamble’s solution does not alter HO• radical generation. Interestingly, leaching in phosphate buffered solution in presence of H2O2 induced a progressive increase in HO• release for crocidolite fibres, whereas a strong reduction was observed for asbestos tremolite. This behaviour is likely due to the quicker alteration of the crocidolite surface due to the interaction with H2O2, as indicated by XPS analysis. In particular, the oxidation induced by H2O2 promotes the dissolution of the first atomic layer of the crocidolite structure and the following occurrence on its surface of new reactive Fe centres, particularly under the form of Fe(II), of which the bulk is richer than the oxidized surface. Accordingly, the heated samples showed a reduced, but not suppressed by thermal oxidation, chemical reactivity, with no significant evolution following incubation in phosphate buffered medium at neutral pH and in presence of H2O2

    From field analysis to nanostructural investigation. A multidisciplinary approach to describe natural occurrence of asbestos in view of hazard assessment

    Get PDF
    The environmental impact of natural occurrences of asbestos (NOA) and asbestos-like minerals is a growing concern for environmental protection agencies. The lack of shared sampling and analytical procedures hinders effectively addressing this issue. To investigate the hazard posed by NOA, a multidisciplinary approach that encompasses geology, mineralogy, chemistry, and toxicology is proposed and demonstrated here, on a natural occurrence of antigorite from a site in Varenna Valley, Italy. Antigorite is, together with chrysotile asbestos, one of the serpentine polymorphs and its toxicological profile is still under debate. We described field and petrographic analyses required to sample a vein and to evaluate the NOA-hazard. A combination of standardized mechanical stress and automated morphometrical analyses on milled samples allowed to quantify the asbestoslike morphology. The low congruent solubility in acidic simulated body fluid, together with the toxicity-relevant surface reactivity due to iron speciation, signalled a bio-activity similar or even greater to that of chrysotile. Structural information on the genetic mechanism of antigorite asbestos-like fibres in nature were provided. Overall, the NOA site was reported to contain veins of asbestos-like antigorite and should be regarded as source of potentially toxic fibres during hazard assessment procedure

    Measurement and interpretation of same-sign W boson pair production in association with two jets in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of fducial and diferential cross sections for both the inclusive and electroweak production of a same-sign W-boson pair in association with two jets (W±W±jj) using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of √s = 13 TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity diference. The measured fducial cross sections for electroweak and inclusive W±W±jj production are 2.92 ± 0.22 (stat.) ± 0.19 (syst.)fb and 3.38±0.22 (stat.)±0.19 (syst.)fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confdence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons H±± that are produced in vector-boson fusion processes and decay into a same-sign W boson pair is performed. The largest deviation from the Standard Model occurs for an H±± mass near 450 GeV, with a global signifcance of 2.5 standard deviations
    corecore