20 research outputs found

    Climate change and water in the UK : past changes and future prospects: a climate change report card for water: Working technical paper

    Get PDF
    Climate change is expected to modify rainfall, temperatures and catchment hydrological responses across the world, and adapting to these water-related changes is a pressing challenge. This paper reviews the impact of climate change on water in the UK and looks at projections of future change. The natural variability of the UK climate makes change hard to detect; only historical increases in air temperature can be attributed to climate change, but over the last fifty years more winter rainfall has been falling in intense events. Future changes in rainfall and evapotranspiration could lead to changed flow regimes and impacts on water quality, aquatic ecosystems and the water available for use by people. Summer flows may decrease on average, but floods may become larger and more frequent. Water quality may decline as a result of higher water temperatures, lower river flows and increased algal blooms. Water demand may increase in response to higher summer temperatures, placing additional pressure on water resources. These changes affect many parts of everyday life, emphasising the importance of long-term adaptation that takes these possible changes into account

    Recent environmental change and atmospheric contamination on Svalbard as recorded in lake sediments – modern limnology, vegetation, and pollen deposition

    Get PDF
    Twenty-four lakes on Svalbard were sampled for palaeolimnological studies and are described in terms of their geographical location, catchment characteristics, water chemistry, and flora. No sediment could be retrieved from one of the lakes. There is a close correlation, as detected by redundancy analysis, between lake-water chemistry and catchment variables, particularly bedrock geology and geographical location for 23 lakes. The flora of the lake catchments is statistically related, as shown by canonical correspondence analysis, to bedrock geology, climate (geographical location), and nutrient status (bird impact). Modern pollen assemblages from eleven lakes contain 2–25% far-distance extra-regional pollen. The modern local and regional pollen depositions are dominated by Oxyria digyna, Poaceae, Saxifraga, Salix, and Brassicaceae pollen

    Hydrochloric Acid: An Overlooked Driver of Environmental Change

    No full text
    Research on the ecosystem impacts of acidifying pollutants, and measures to control them, has focused almost exclusively on sulfur (S) and nitrogen (N) compounds. Hydrochloric acid (HCl), although emitted by coal burning, has been overlooked as a driver of ecosystem change because most of it was considered to redeposit close to emission sources rather than in remote natural ecosystems. Despite receiving little regulatory attention, measures to reduce S emissions, and changes in energy supply, have led to a 95% reduction in United Kingdom HCl emissions within 20 years. Long-term precipitation, surface water, and soil solution data suggest that the near-disappearance of HCl from deposition could account for 30-40% of chemical recovery from acidification during this time, affecting both near-source and remote areas. Because HCl is highly mobile in reducing environments, it is amore potent acidifier of wetlands than S or N, and HCl may have been the major driver of past peatland acidification. Reduced HCl loadings could therefore have affected the peatland carbon cycle, contributing to increases in dissolved organic carbon leaching to surface waters. With many regions increasingly reliant on coal for power generation, HCl should be recognized as a potentially significant constituent of resulting emissions, with distinctive ecosystem impacts

    Heavy rainfall impacts on trihalomethane formation in contrasting northwestern European potable waters

    No full text
    There is emerging concern over the impact of extreme events such as heavy rainfall on the quality of water entering the drinking water supply from aboveground sources, as such events are expected to increase in magnitude and frequency in response to climate change. We compared the impact of rainfall events on streamwater quality in four contrasting upland (peatland and mineral soil) and lowland agricultural catchments used to supply drinking water in France (Brittany) and the United Kingdom (North Wales) by analyzing water samples collected before, during, and after specific events. At all four streams, heavy rainfall led to a considerable rise in organic matter concentration ranging from 48 to 158%. Dissolved organic carbon (DOC) quality, as determined using specific ultraviolet absorbance, changed consistently at all sites during rainfall events, with a greater proportion of aromatic and higher molecular weight compounds following the onset of rainfall. However, the change in DOC quality and quantity did not significantly alter the trihalomethane formation potential. We observed small increases in trihalomethane (THM) generation only at the Welsh peatland and agricultural sites and a small decrease at the Brittany agricultural site. The proportion of brominated THMs in chlorinated waters was positively correlated with bromide/DOC ratio in raw waters for all sites and hydrological conditions. These results provide a first indication of the potential implications for surface-based drinking water resources resulting from expected future increases in rainfall event intensity and extension of dry periods with climate changes

    Recovery of macroinvertebrate species richness in acidified upland waters assessed with a field toxicity model

    No full text
    The WHAM-FTOX model uses chemical speciation to describe the bioavailability and toxicity of proton and metal mixtures (including Al) to aquatic organisms. Here, we apply the previously parameterised model to 45 UK and Norwegian upland surface waters recovering from acidification, to compare its predictions of themaximumspecies richness of the macroinvertebrate Orders Ephemeroptera, Plecoptera and Trichoptera (SR-EPT) with time-series observations. This work uses data from two national scale survey programmes, the Acid Waters Monitoring Network in the UK and a lakes survey in Norway. We also investigate data from a long-studied catchment, Llyn Brianne in Wales. For the national surveys, model results relate well with actual trends, with Regional Kendall analysis indicating biological recovery rates for both actual and predicted species richness that are generally consistent (1.2–2.0 species per decade). However, actual recovery rates in AWMN lakes were less than in the rivers (0.6 vs. 2.0 species per decade), whilst predicted rates were similar (1.7 vs. 2.0). Several sites give a very good fit between model predictions and observations; at these sites chemistry is apparently the principal factor controlling limits of species richness. At other sites where there is poorer agreement between model predictions and observations, chemistry can still explain some of the reduction in species richness. However, for these sites, additional (un-modelled) factors further suppress species richness. The model gives a good indication of the extent of these un-modelled factors and the degree to which chemistry may suppress species richness at a given site

    Trends in surface water chemistry in acidified areas in Europe and North America from 1990 to 2008

    Get PDF
    Acidification of lakes and rivers is still an environmental concern despite reduced emissions of acidifying compounds. We analysed trends in surface water chemistry of 173 acid-sensitive sites from 12 regions in Europe and North America. In 11 of 12 regions, non-marine sulphate (SO4*) declined significantly between 1990 and 2008 (−15 to −59 %). In contrast, regional and temporal trends in nitrate were smaller and less uniform. In 11 of 12 regions, chemical recovery was demonstrated in the form of positive trends in pH and/or alkalinity and/or acid neutralising capacity (ANC). The positive trends in these indicators of chemical recovery were regionally and temporally less distinct than the decline in SO4* and tended to flatten after 1999. From an ecological perspective, the chemical quality of surface waters in acid-sensitive areas in these regions has clearly improved as a consequence of emission abatement strategies, paving the way for some biological recovery
    corecore