22 research outputs found

    Studies for New Experiments at the CERN M2 Beamline within "Physics Beyond Colliders": AMBER/COMPASS++, NA64mu, MuonE

    Full text link
    The "Physics Beyond Colliders (PBC)" study explores fundamental physics opportunities at the CERN accelerator complex complementary to collider experiments. Three new collaborations aim to exploit the M2 beamline in the North Area with existing high-intensity muon and hadron beams, but also aspire to go beyond the current M2 capabilities with a RF-separated, high intensity hadron beam, under study. The AMBER/COMPASS++ collaboration proposes an ambitious program with a measurement of the proton radius with muon beams, as well as QCD-related studies from pion PDFs / Drell-Yan to cross section measurements for dark sector searches. Assuming feasibility of the RF-separated beam, the spectrum of strange mesons would enter a high precision era while kaon PDFs as well as nucleon TMDs would be accessible via Drell-Yan reactions. The NA64mu collaboration proposes to search for dark sector mediators such as a dark scalar A' or a hypothetical Z_mu using the M2 muon beam and complementing their on-going A' searches with electron beams. The MuonE collaboration intends to assess the hadronic component of the vacuum polarization via elastic mu-e scattering, the dominant uncertainty in the determination of (g-2)_mu. An overview of the three new experimental programs will be presented together with implications for the M2 beamline and the experimental area EHN2, based on the studies of the PBC "Conventional Beams" Working Group.Comment: MENU 2019 Proceedings, 7 page

    Etude des phénomènes photophysiques de la discrimination entre neutrons rapides et photons gamma dans les scintillateurs plastiques

    No full text
    The context of this PhD lies within the framework of fighting against nuclear and radiological threats (CBRN-E acronym). These hazardous materials can emit neutrons. Neutrons can traditionally be detected thanks to a proportional counter based on Helium-3 gas. However, the last decade announced the shortage of this gas, leading therefore scientists to design new detectors, which are as effective as proportional counters. Neutrons are always emitted with a gamma rays flux. So detectors have to discriminate between these two contributions. Plastic scintillators, which are radioluminescent polymers, can effectively operate this separation. This discrimination between neutrons and gamma rays is made thanks the decay of the light pulse. Born in 1968, Voltz and Laustriat’s theory explains neutron/gamma discrimination in plastic scintillators (also named Pulse Shape Discrimination, PSD). Thus, the subject of this PhD is to understand photophysical phenomena in plastic scintillators, which take place after neutron/matter or gamma/matter interaction but before the emission of scintillation photons. We first provided a state of the art of discriminating plastic scintillators as early as 1959 (first prepared material) until nowadays. Many chemical compositions have been described in the literature. All these works highlight the need to finely select the chemical composition allowing neutron/gamma discrimination. It is extremely hard to model the interaction of radiation with matter (energies up to the MeV range) followed by photophysical transfers (up to the eV range). This way, we characterized lab made plastic scintillators. To do this, we set up a digital detection chain for neutron/gamma discrimination measurements. We then tested the influence of intrinsic parameters to the nature of scintillators: chemical preparation, volume and secondary fluorophore have been particularly studied. We noted that scintillators reproducibility is complex to obtain. Furthermore, the secondary fluorophore and its concentration have to be selected according to the volume of the material in order to avoid self-absorption. Thanks to transient absorption measurements, we identified the photophysical transfer which allocates a significant role to the secondary fluorophore. We then evaluated the influence of extrinsic criteria on neutron/gamma properties of plastic scintillators, and specifically high irradiation doses (10 kGy). Finally, thanks to the ELYSE platform (CNRS & Paris-Sud University), we optically simulated a neutron track in liquid and plastic scintillators. Thanks to the detection system offering a 3D spectrometry in transient absorption and fluorescence, we elaborated a new photophysical theory, which can explain the formation of triplet states in plastic scintillators for neutron/gamma discrimination. All these works presented herein contribute to understand the photophysical phenomena, which are responsible of neutron/gamma discrimination in plastic scintillators.Le contexte de ce doctorat s’inscrit dans la lutte contre les risques de terrorisme nucléaire et radiologique (acronyme NRBC-E). La détection de ces matières dangereuses, car émettrices de neutrons, s’effectue traditionnellement à l’aide de compteurs proportionnels à Hélium-3. Or, l’annonce de la pénurie de ce gaz depuis plus d’une dizaine d’années pousse à concevoir des détecteurs aussi performants. L’émission neutronique étant toujours accompagnée d’un flux gamma, les détecteurs doivent discriminer ces deux contributions. Les scintillateurs plastiques, polymères radioluminescents, peuvent opérer cette séparation. Celle-ci s’effectue alors sur le déclin de l’impulsion lumineuse. Née en 1968, la théorie de Voltz et Laustriat fournit une explication de la discrimination neutron/gamma dans les scintillateurs organiques (« Pulse Shape Discrimination », PSD). Ainsi, le sujet du doctorat est d’appréhender les phénomènes photophysiques ayant lieu dans ces matériaux, plus particulièrement sous forme plastique, après l’interaction neutron/matière ou gamma/matière mais avant l’émission de photons de scintillation. Nous avons d’abord dressé un état de l’art des scintillateurs plastiques discriminants de 1959, année du premier matériau préparé, jusqu’à aujourd’hui. Nombre de compositions chimiques ont été décrites dans la littérature ; ces travaux mettent en évidence les compositions chimiques permettant la discrimination neutron/gamma. Compte-tenu de l’extrême complexité de modéliser l’interaction rayonnement/matière (énergies de l’ordre du MeV) suivie des transferts photophysiques (de l’ordre de l’eV), nous avons caractérisé des scintillateurs plastiques préparés au laboratoire. Ainsi, nous avons mis en place une chaîne d’acquisition numérique permettant la discrimination neutron/gamma. Nous avons ensuite testé l’influence de paramètres intrinsèquement liés à la nature du matériau : la préparation chimique, le volume et le fluorophore secondaire. Nous avons constaté que la reproductibilité des matériaux plastiques est complexe à obtenir. Du reste, le fluorophore secondaire et sa concentration doivent être soigneusement sélectionnés selon le volume du scintillateur afin d’éviter l’auto-absorption. Grâce à des mesures d’absorption transitoire, nous avons identifié le transfert photophysique conférant un rôle important au fluorophore secondaire. Par ailleurs, nous avons évalué l’influence de critères extrinsèques aux scintillateurs plastiques, plus spécifiquement l’influence d’une forte irradiation (10 kGy), sur les propriétés de discrimination neutron/gamma des matériaux. Enfin, grâce à la plateforme ELYSE (CNRS & Université Paris-Sud), nous avons optiquement simulé une trace neutron dans des scintillateurs liquides et plastiques. Grâce au système de détection offrant une spectrométrie 3D en absorption transitoire et en fluorescence, nous avons élaboré une nouvelle théorie photophysique permettant d’expliquer la formation d’états excités triplets significatifs pour la discrimination neutron/gamma. Les travaux présentés ici contribuent à l’appréhension des phénomènes photophysiques responsables de la discrimination neutron/gamma dans les scintillateurs plastiques

    Photophysical study of discrimination between fast neutrons and gamma rays in plastic scintillators

    No full text
    Le contexte de ce doctorat s’inscrit dans la lutte contre les risques de terrorisme nucléaire et radiologique (acronyme NRBC-E). La détection de ces matières dangereuses, car émettrices de neutrons, s’effectue traditionnellement à l’aide de compteurs proportionnels à Hélium-3. Or, l’annonce de la pénurie de ce gaz depuis plus d’une dizaine d’années pousse à concevoir des détecteurs aussi performants. L’émission neutronique étant toujours accompagnée d’un flux gamma, les détecteurs doivent discriminer ces deux contributions. Les scintillateurs plastiques, polymères radioluminescents, peuvent opérer cette séparation. Celle-ci s’effectue alors sur le déclin de l’impulsion lumineuse. Née en 1968, la théorie de Voltz et Laustriat fournit une explication de la discrimination neutron/gamma dans les scintillateurs organiques (« Pulse Shape Discrimination », PSD). Ainsi, le sujet du doctorat est d’appréhender les phénomènes photophysiques ayant lieu dans ces matériaux, plus particulièrement sous forme plastique, après l’interaction neutron/matière ou gamma/matière mais avant l’émission de photons de scintillation. Nous avons d’abord dressé un état de l’art des scintillateurs plastiques discriminants de 1959, année du premier matériau préparé, jusqu’à aujourd’hui. Nombre de compositions chimiques ont été décrites dans la littérature ; ces travaux mettent en évidence les compositions chimiques permettant la discrimination neutron/gamma. Compte-tenu de l’extrême complexité de modéliser l’interaction rayonnement/matière (énergies de l’ordre du MeV) suivie des transferts photophysiques (de l’ordre de l’eV), nous avons caractérisé des scintillateurs plastiques préparés au laboratoire. Ainsi, nous avons mis en place une chaîne d’acquisition numérique permettant la discrimination neutron/gamma. Nous avons ensuite testé l’influence de paramètres intrinsèquement liés à la nature du matériau : la préparation chimique, le volume et le fluorophore secondaire. Nous avons constaté que la reproductibilité des matériaux plastiques est complexe à obtenir. Du reste, le fluorophore secondaire et sa concentration doivent être soigneusement sélectionnés selon le volume du scintillateur afin d’éviter l’auto-absorption. Grâce à des mesures d’absorption transitoire, nous avons identifié le transfert photophysique conférant un rôle important au fluorophore secondaire. Par ailleurs, nous avons évalué l’influence de critères extrinsèques aux scintillateurs plastiques, plus spécifiquement l’influence d’une forte irradiation (10 kGy), sur les propriétés de discrimination neutron/gamma des matériaux. Enfin, grâce à la plateforme ELYSE (CNRS & Université Paris-Sud), nous avons optiquement simulé une trace neutron dans des scintillateurs liquides et plastiques. Grâce au système de détection offrant une spectrométrie 3D en absorption transitoire et en fluorescence, nous avons élaboré une nouvelle théorie photophysique permettant d’expliquer la formation d’états excités triplets significatifs pour la discrimination neutron/gamma. Les travaux présentés ici contribuent à l’appréhension des phénomènes photophysiques responsables de la discrimination neutron/gamma dans les scintillateurs plastiques.The context of this PhD lies within the framework of fighting against nuclear and radiological threats (CBRN-E acronym). These hazardous materials can emit neutrons. Neutrons can traditionally be detected thanks to a proportional counter based on Helium-3 gas. However, the last decade announced the shortage of this gas, leading therefore scientists to design new detectors, which are as effective as proportional counters. Neutrons are always emitted with a gamma rays flux. So detectors have to discriminate between these two contributions. Plastic scintillators, which are radioluminescent polymers, can effectively operate this separation. This discrimination between neutrons and gamma rays is made thanks the decay of the light pulse. Born in 1968, Voltz and Laustriat’s theory explains neutron/gamma discrimination in plastic scintillators (also named Pulse Shape Discrimination, PSD). Thus, the subject of this PhD is to understand photophysical phenomena in plastic scintillators, which take place after neutron/matter or gamma/matter interaction but before the emission of scintillation photons. We first provided a state of the art of discriminating plastic scintillators as early as 1959 (first prepared material) until nowadays. Many chemical compositions have been described in the literature. All these works highlight the need to finely select the chemical composition allowing neutron/gamma discrimination. It is extremely hard to model the interaction of radiation with matter (energies up to the MeV range) followed by photophysical transfers (up to the eV range). This way, we characterized lab made plastic scintillators. To do this, we set up a digital detection chain for neutron/gamma discrimination measurements. We then tested the influence of intrinsic parameters to the nature of scintillators: chemical preparation, volume and secondary fluorophore have been particularly studied. We noted that scintillators reproducibility is complex to obtain. Furthermore, the secondary fluorophore and its concentration have to be selected according to the volume of the material in order to avoid self-absorption. Thanks to transient absorption measurements, we identified the photophysical transfer which allocates a significant role to the secondary fluorophore. We then evaluated the influence of extrinsic criteria on neutron/gamma properties of plastic scintillators, and specifically high irradiation doses (10 kGy). Finally, thanks to the ELYSE platform (CNRS & Paris-Sud University), we optically simulated a neutron track in liquid and plastic scintillators. Thanks to the detection system offering a 3D spectrometry in transient absorption and fluorescence, we elaborated a new photophysical theory, which can explain the formation of triplet states in plastic scintillators for neutron/gamma discrimination. All these works presented herein contribute to understand the photophysical phenomena, which are responsible of neutron/gamma discrimination in plastic scintillators

    A Histogram-Difference Method (HDM) for Neutron/Gamma Discrimination Using Liquid and Plastic Scintillators

    No full text
    International audienceThis paper introduces a novel and extremely simple-and therefore, easily implemented in a field-programmable gate array-method of neutron/gamma pulse discrimination called the histogram-difference method (HDM). Crucially, this method relies on the use of a “reference set” of γ-only pulses from 22Na, 137Cs, and 60Co sources and on features extracted from the pulses. The pulses from this reference set are compared to a set of an identical number of n + γ pulses from a 252Cf source. Not only can HDM determine the presence of neutrons in the 252Cf source, but it can also estimate the approximate percentage of neutron pulses from that source. The results reported in this paper are based on data from different radioactive sources and a standard scintillator for this type of research, namely, BC-501A. These results were confirmed using three other scintillators, one made in-house and two others that are commercially available, EJ-299-33 and EJ-200. Pulses were encoded using Q values, which are features extracted from the pulses, that is, (Qtotal, Qtail) pairs in Sℝ2. As control, we also encoded pulses as the root-mean-square (RMS) distances from the average pulse of all known γ-only pulses and ran HDM using these pulse representations. The results are very similar to those obtained using a Q-value encoding of the pulses

    Neutron/gamma discrimination enhancement: plastic scintillators high dose irradiation and recovery time

    No full text
    International audienceIn the context of high-energy physics experiments, particle accelerators create a significant dose of radiations, up to 106 Gy for example at the Large Hadron Collider (LHC, Cern). Control detectors, such as scintillators, are affected by these high irradiation levels. The literature mentions that the light yield of organic scintillators dramatically drops when strongly irradiated. However, the tested scintillators can recover some of their light output with time. To the best of our knowledge, only the luminescent properties of plastic scintillators were analyzed under high radiation fluxes. But, plastic scintillators are also able to discriminate fast neutrons from gamma rays. In this work, we characterized neutron/gamma discriminating as well as emissive propertiesof plastic scintillators after high dose irradiations. Two identical lab-made plastic scintillators containing a polystyrene-based matrix and two fluorophores were analyzed before and after high dose irradiation. Irradiation was performed using a Gamma-Cell 220 Excel with twelve 60Co sources and a 53.7 Gy/min dose rate at isocenter. These two scintillators were irradiated to reach a cumulative dose equal to 104 Gy.In order to measure their neutron/gamma discrimination ability, scintillators were coupled to a Hamamatsu R7724-100 photomultiplier tube and placed in front of a 252Cf source (Activity 580 kBq). The anode signal fed a digitizer. Scintillation pulses were then recorded and post-processed. A charge-comparison method was implemented and FoM was evaluated. Offlinetreatment allowed the estimation of fast and slow decay times of neutron pulses, as well as their relative intensities. In parallel, characterization of radioluminescence properties of irradiated and non-irradiated samples was performed.Results indicate a strong modification in the neutron/gamma discrimination capability before and after high dose irradiations and a redshift of the radioluminescence spectrum. In fact, a 103 Gy irradiation increases the FoM of both sensors by a factor 2.5 at least. Further, as recovery time passes after a 104 Gy cumulative dose, FoM improves for scintillators and is multiplied by 6 compared to the value at the zero dose. Thanks to evaluated decay times and relative intensities, we could infer that a strong irradiation does not produce a higher yield of triplet excited states but it impacts the slow decay time of the tested scintillator. This leads to a better neutron/gamma discrimination than at the zero dose. These observations lead us to believe that the intrinsic nature of the plastic material is modified under high dose irradiation.In this paper we present the current iteration of this ongoing work. The neutron/gamma discrimination properties are presented for both plastic scintillators and first characterization results are discussed. We show that material modification under high dose irradiation manages to an improvement in neutron/gamma discrimination opening the field to applications of very high dose measurements

    Plastic scintillators modifications for a selective radiation detection

    No full text
    Conference of 4th International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications, ANIMMA 2015 ; Conference Code:121554International audienceRecent developments of plastic scintillators are reviewed, from January 2000 to June 2015. All examples are distributed into the main application, i.e. how the plastic scintillator was modified to enhance the detection towards a given radiation particle. The main characteristics of these newly created scintillators and their detection properties are given

    Nanoparticles-loaded plastic scintillators for fast/thermal neutrons/gamma discrimination: Simulation and results

    No full text
    International audienceWe report herein the application of a new series of plastic scintillators loaded with lithium tetraborate nanoparticles (Li2B4O7) designed for the simultaneous detection of fast neutrons, thermal neutrons and gamma-rays. First, MCNP simulations are performed to highlight the potential benefit of Li2B4O7 loading. Then, a nanoparticle-loaded scintillator is prepared and evaluated towards the detection of a partially thermalized neutron/gamma 252-californium source. Several scenarios of radiation/matter interactions are evaluated against the observed results. A detection chamber composed of boron-containing chipboard wood has been specifically designed and a subtraction method was set up to afford the best discrimination pattern. For the first time, a triple discrimination is presented with a nanoparticles-loaded plastic scintillator, where both 6Li(n, α) and 10B(n, α) signatures are observed. A Figure of Merit of 1.40 was calculated between fast neutrons and gamma rays around 480 keVee. The Figure of Merit between fast + thermal neutrons and gamma rays is slightly worse as it is 1.16 at 380 keVee
    corecore