25 research outputs found

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Combined Stressors in Reliability Failure Modes in Flip-Chip Electronic Packaging

    No full text
    The trend toward miniaturization of electronic devices to fulfill Moore’s law introduces new reliability concerns to the electronic packaging process while worsening existing primary challenges. In solder interconnect specifically, temperature cycling is one of the prominent failure threats. However, with further downscaling of the flip-chip solder connections, electromigration also present a precarious failure mode in these interconnects. On the other hand, understanding the degradation mechanism in solders is crucial for the power electronic products\u27 reliability considering the industrial tendency to replace wirebonds with solder attachment while improving the current carry capacity. This dissertation utilizes FEA simulation and an experimental approach to study the solder’s reliability. First, the SiC MOSFET packaging method using flip-chip technology has been studied to achieve an optimum arrangement that improves reliability and electrical characteristics. Also, the opportunity to estimate the flip-chipped package thermal cycling reliability using mechanical cycling as a fast reliability estimation tool is investigated, and the related Norris-Landsberg parameters are calculated using the FEA approach. Lastly, a testing setup has been developed to study the combined effects of electromigration and stress in solder connection. The MTTF of the joint under tensile stress, while it is experiencing current stressing, is measured. This work can guide further experimental and computational works to identify the degradation in the solders under multiple environmental and operational conditions

    Rapid Solder Interconnect Fatigue Life Test Methodology for Predicting Thermomechanical Reliability

    No full text

    Fabrication and Control of a Microheater Array for Microheater Array Powder Sintering

    No full text
    Microheater Array Powder Sintering (MAPS) is a novel additive manufacturing process that uses a microheater array to replace the laser of selective laser sintering as the energy source. Most of the previous research on microheaters are for applications in gas sensing or inkjet printing. The operation temperature and response time of the microheater array are critical for the choice of sintering materials and printing speed for the MAPS process. In this paper, we present the fabrication, packaging, and control of a platinum microheater array that has a target operation temperature of 400°C and a response time of ~1 millisecond. First, we will present the fabrication process of a microheater array. The fabricated microheater array is then packaged for easy control and to serve as the printhead of the MAPS process. A PID controller is designed to control the temperature response of the microheater. Finally, the effectiveness of the controller is evaluated. Results show the fabricated microheater array satisfies the design requirements for the MAPS process.Mechanical Engineerin

    Association Between Breast Reconstruction Surgery and Quality of Life in Iranian Breast Cancer Patients

    No full text
    Breast reconstruction (BR) surgery is not common for the treatment of breast cancer in low- and middle-income countries, including Iran. We evaluated the quality of life (QoL) in Iranian breast cancer patients who underwent BR at the Cancer Institute of Iran. We compared patients who had BR with breast cancer patients who had a radical mastectomy as the control group, matched for age, and time since surgery. We interviewed the cases and controls and collected data about QoL using EORTC-Q30 and EORTC-Q23 questionnaires. We also obtained personal and clinical data for the patients and controls. We compared 61 BR and 45 radical mastectomy patients. The BR patients had a higher level of education (73.8%) than the mastectomy patients (27.3%). In addition, the BR patients had a higher employment rate (58%) than the mastectomy patients (4.4%). QoL was significantly better among BR patients compared to the control group (P<0.05). In the multivariable analyses, the BR patients had significantly lower scores of pain, fatigue, and diarrhoea than the controls. Breast cancer patients who underwent BR surgery had a higher quality of life scores in some domains compared to the radical mastectomy. Socioeconomic factors and awareness of the patients about BR was crucial for choosing BR among Iranian patients

    QSPR study of viscoplastic properties of peptide-based hydrogels

    No full text
    In this study, the power of machine learning was harnessed to probe the link between molecular structures of peptide-based hydrogels and their viscoplastic properties. The selection of compounds was attempted in accordance with the prescribed full list of peptide-based materials exhibiting hydrogel functionality in the literature. In this pursuit, a complete set of molecular descriptors and fingerprints was considered – accounting for an entry of size 17,968 for each peptide-based structure analyzed. The elastic and viscous moduli response of materials were mapped over a wide frequency spectrum in the range [0.1–100] (rad/s). In general, the results indicate that the frequency-dependent mechanical response of peptide-based hydrogels is statistically correlated with its (inter)molecular attributes, such as charge, first ionization potential (or equivalently electronegativity), surface area, number of chemical substrates, bond type, and intermolecular interactions. The performance of several (supervised) soft computing techniques was measured, for our quantitative structure property relationships model. In addition, the hypothesis of mapping our databank to a new system of principal components was tested, by using an unsupervised methodology, which resulted in enhancement of the prediction accuracy. In terms of significance, the present article provides the first report of frequency-dependent elastic and viscous moduli, for a set of 70 peptide-based formulations with hydrogel functionality. Communicated by Ramaswamy H. Sarma</p
    corecore