75 research outputs found
An Evolutionary Trade-Off between Protein Turnover Rate and Protein Aggregation Favors a Higher Aggregation Propensity in Fast Degrading Proteins
We previously showed the existence of selective pressure against protein aggregation by the enrichment of aggregation-opposing ‘gatekeeper’ residues at strategic places along the sequence of proteins. Here we analyzed the relationship between protein lifetime and protein aggregation by combining experimentally determined turnover rates, expression data, structural data and chaperone interaction data on a set of more than 500 proteins. We find that selective pressure on protein sequences against aggregation is not homogeneous but that short-living proteins on average have a higher aggregation propensity and fewer chaperone interactions than long-living proteins. We also find that short-living proteins are more often associated to deposition diseases. These findings suggest that the efficient degradation of high-turnover proteins is sufficient to preclude aggregation, but also that factors that inhibit proteasomal activity, such as physiological ageing, will primarily affect the aggregation of short-living proteins
ProRepeat: an integrated repository for studying amino acid tandem repeats in proteins
ProRepeat (http://prorepeat.bioinformatics.nl/) is an integrated curated repository and analysis platform for in-depth research on the biological characteristics of amino acid tandem repeats. ProRepeat collects repeats from all proteins included in the UniProt knowledgebase, together with 85 completely sequenced eukaryotic proteomes contained within the RefSeq collection. It contains non-redundant perfect tandem repeats, approximate tandem repeats and simple, low-complexity sequences, covering the majority of the amino acid tandem repeat patterns found in proteins. The ProRepeat web interface allows querying the repeat database using repeat characteristics like repeat unit and length, number of repetitions of the repeat unit and position of the repeat in the protein. Users can also search for repeats by the characteristics of repeat containing proteins, such as entry ID, protein description, sequence length, gene name and taxon. ProRepeat offers powerful analysis tools for finding biological interesting properties of repeats, such as the strong position bias of leucine repeats in the N-terminus of eukaryotic protein sequences, the differences of repeat abundance among proteomes, the functional classification of repeat containing proteins and GC content constrains of repeats’ corresponding codons
Native-state stability determines the extent of degradation relative to secretion of protein variants from Pichia pastoris.
We have investigated the relationship between the stability and secreted yield of a series of mutational variants of human lysozyme (HuL) in Pichia pastoris. We show that genes directly involved in the unfolded protein response (UPR), ER-associated degradation (ERAD) and ER-phagy are transcriptionally up-regulated more quickly and to higher levels in response to expression of more highly-destabilised HuL variants and those variants are secreted to lower yield. We also show that the less stable variants are retained within the cell and may also be targeted for degradation. To explore the relationship between stability and secretion further, two different single-chain-variable-fragment (scFv) antibodies were also expressed in P. pastoris, but only one of the scFvs gave rise to secreted protein. The non-secreted scFv was detected within the cell and the UPR indicators were pronounced, as they were for the poorly-secreted HuL variants. The non-secreted scFv was modified by changing either the framework regions or the linker to improve the predicted stability of the scFv and secretion was then achieved and the levels of UPR indicators were lowered Our data support the hypothesis that less stable proteins are targeted for degradation over secretion and that this accounts for the decrease in the yields observed. We discuss the secretion of proteins in relation to lysozyme amyloidosis, in particular, and optimised protein secretion, in general
Amyloidogenic Regions and Interaction Surfaces Overlap in Globular Proteins Related to Conformational Diseases
Protein aggregation underlies a wide range of human disorders. The polypeptides involved in these pathologies might be intrinsically unstructured or display a defined 3D-structure. Little is known about how globular proteins aggregate into toxic assemblies under physiological conditions, where they display an initially folded conformation. Protein aggregation is, however, always initiated by the establishment of anomalous protein-protein interactions. Therefore, in the present work, we have explored the extent to which protein interaction surfaces and aggregation-prone regions overlap in globular proteins associated with conformational diseases. Computational analysis of the native complexes formed by these proteins shows that aggregation-prone regions do frequently overlap with protein interfaces. The spatial coincidence of interaction sites and aggregating regions suggests that the formation of functional complexes and the aggregation of their individual subunits might compete in the cell. Accordingly, single mutations affecting complex interface or stability usually result in the formation of toxic aggregates. It is suggested that the stabilization of existing interfaces in multimeric proteins or the formation of new complexes in monomeric polypeptides might become effective strategies to prevent disease-linked aggregation of globular proteins
Evidence for the adaptation of protein pH-dependence to subcellular pH
<p>Abstract</p> <p>Background</p> <p>The availability of genome sequences, and inferred protein coding genes, has led to several proteome-wide studies of isoelectric points. Generally, isoelectric points are distributed following variations on a biomodal theme that originates from the predominant acid and base amino acid sidechain pKas. The relative populations of the peaks in such distributions may correlate with environment, either for a whole organism or for subcellular compartments. There is also a tendency for isoelectric points averaged over a subcellular location to not coincide with the local pH, which could be related to solubility. We now calculate the correlation of other pH-dependent properties, calculated from 3D structure, with subcellular pH.</p> <p>Results</p> <p>For proteins with known structure and subcellular annotation, the predicted pH at which a protein is most stable, averaged over a location, gives a significantly better correlation with subcellular pH than does isoelectric point. This observation relates to the cumulative properties of proteins, since maximal stability for individual proteins follows the bimodal isoelectric point distribution. Histidine residue location underlies the correlation, a conclusion that is tested against a background of proteins randomised with respect to this feature, and for which the observed correlation drops substantially.</p> <p>Conclusion</p> <p>There exists a constraint on protein pH-dependence, in relation to the local pH, that is manifested in the pKa distribution of histidine sub-proteomes. This is discussed in terms of protein stability, pH homeostasis, and fluctuations in proton concentration.</p
Polyglutamine Induced Misfolding of Huntingtin Exon1 is Modulated by the Flanking Sequences
Polyglutamine (polyQ) expansion in exon1 (XN1) of the huntingtin protein is linked to Huntington's disease. When the number of glutamines exceeds a threshold of approximately 36–40 repeats, XN1 can readily form amyloid aggregates similar to those associated with disease. Many experiments suggest that misfolding of monomeric XN1 plays an important role in the length-dependent aggregation. Elucidating the misfolding of a XN1 monomer can help determine the molecular mechanism of XN1 aggregation and potentially help develop strategies to inhibit XN1 aggregation. The flanking sequences surrounding the polyQ region can play a critical role in determining the structural rearrangement and aggregation mechanism of XN1. Few experiments have studied XN1 in its entirety, with all flanking regions. To obtain structural insights into the misfolding of XN1 toward amyloid aggregation, we perform molecular dynamics simulations on monomeric XN1 with full flanking regions, a variant missing the polyproline regions, which are hypothesized to prevent aggregation, and an isolated polyQ peptide (Qn). For each of these three constructs, we study glutamine repeat lengths of 23, 36, 40 and 47. We find that polyQ peptides have a positive correlation between their probability to form a β-rich misfolded state and their expansion length. We also find that the flanking regions of XN1 affect its probability to^x_page_count=28 form a β-rich state compared to the isolated polyQ. Particularly, the polyproline regions form polyproline type II helices and decrease the probability of the polyQ region to form a β-rich state. Additionally, by lengthening polyQ, the first N-terminal 17 residues are more likely to adopt a β-sheet conformation rather than an α-helix conformation. Therefore, our molecular dynamics study provides a structural insight of XN1 misfolding and elucidates the possible role of the flanking sequences in XN1 aggregation
The distribution of residues in a polypeptide sequence is a determinant of aggregation optimized by evolution
It has been shown that the propensity of a protein to form amyloid-like fibrils can be predicted with high accuracy from the knowledge of its amino acid sequence. It has also been suggested, however, that some regions of the sequences are more important than others in determining the aggregation process. Here, we have addressed this issue by constructing a set of "sequence scrambled" variants of the first 29 residues of horse heart apomyoglobin (apoMb1-29), in which the sequence was modified while maintaining the same amino acid composition. The clustering of the most amyloidogenic residues in one region of the sequence was found to cause a marked increase of the elongation rate (kagg) and a remarkable shortening of the lag phase (tlag) of the fibril growth, as determined by far-UV circular dichroism and thioflavin T fluorescence. We also show that taking explicitly into consideration the presence of aggregation-promoting regions in the predictive methods results in a quantitative agreement between the theoretical and observed kagg and tlag values of the apoMb 1-29 variants. These results, together with a comparison between homologous segments from the family of globins, indicate the existence of a negative selection against the clustering of highly amyloidogenic residues in one or few regions of polypeptide sequences. © 2007 by the Biophysical Society
Besoins, prescriptions et sécurité des produits sanguins labiles ; autosuffisance en produits sanguins labiles [Roundtables of SFTS Congress 2013: Needs, indications and safety of blood products; self-sufficiency in blood products].
The current issues debate brings together experts around the themes of self-sufficiency (in its national and European aspects) and of needs in cellular blood products. The point of view of the manufacturer and prescribers of blood products are confronted
- …