19 research outputs found

    The Chemical Homogeneity of Sun-like Stars in the Solar Neighborhood

    Get PDF
    The compositions of stars are a critical diagnostic tool for many topics in astronomy such as the evolution of our Galaxy, the formation of planets, and the uniqueness of the Sun. Previous spectroscopic measurements indicate a large intrinsic variation in the elemental abundance patterns of stars with similar overall metal content. However, systematic errors arising from inaccuracies in stellar models are known to be a limiting factor in such studies, and thus it is uncertain to what extent the observed diversity of stellar abundance patterns is real. Here we report the abundances of 30 elements with precisions of 2% for 79 Sun-like stars within 100 parsecs. Systematic errors are minimized in this study by focusing on solar twin stars and performing a line-by-line differential analysis using high-resolution, high-signal-to-noise spectra. We resolve [X/Fe] abundance trends in galactic chemical evolution at precisions of 10−310^{-3} dex Gyr−1^{-1} and reveal that stars with similar ages and metallicities have nearly identical abundance patterns. Contrary to previous results, we find that the ratios of carbon-to-oxygen and magnesium-to-silicon in solar metallicity stars are homogeneous to within 10% throughout the solar neighborhood, implying that exoplanets may exhibit much less compositional diversity than previously thought. Finally, we demonstrate that the Sun has a subtle deficiency in refractory material relative to >80% of solar twins (at 2σ\sigma confidence), suggesting a possible signpost for planetary systems like our own.Comment: ApJ accepted versio

    The chemical homogeneity of sun-like stars in the solar neighborhood

    Get PDF
    The compositions of stars are a critical diagnostic tool for many topics in astronomy such as the evolution of our Galaxy, the formation of planets, and the uniqueness of the Sun. Previous spectroscopic measurements indicate a large intrinsic variation in the elemental abundance patterns of stars with similar overall metal content. However, systematic errors arising from inaccuracies in stellar models are known to be a limiting factor in such studies, and thus it is uncertain to what extent the observed diversity of stellar abundance patterns is real. Here we report the abundances of 30 elements with precisions of 2% for 79 Sun-like stars within 100 pc. Systematic errors are minimized in this study by focusing on solar twin stars and performing a line-by-line differential analysis using high-resolution, high-signal-to-noise spectra. We resolve [X/Fe] abundance trends in galactic chemical evolution at precisions of 10−3 dex Gyr−1 and reveal that stars with similar ages and metallicities have nearly identical abundance patterns. Contrary to previous results, we find that the ratios of carbon-to-oxygen and magnesium-tosilicon in solar-metallicity stars are homogeneous to within 10% throughout the solar neighborhood, implying that exoplanets may exhibit much less compositional diversity than previously thought. Finally, we demonstrate that the Sun has a subtle deficiency in refractory material relative to >80% of solar twins (at 2σ confidence), suggesting a possible signpost for planetary systems like our own

    Metallicities of Young Open Clusters I: NGC 7160 and NGC 2232

    Full text link
    We present a moderate-resolution spectroscopic analysis of the 10-25 Myr clusters NGC 7160 and NGC 2232, using observations obtained with the WIYN 3.5-m telescope. Both NGC 7160 and NGC 2232 are found to have super-solar metallicities, with a mean [Fe/H] = 0.16 \pm 0.03 (s.e.m.) for NGC 7160, and 0.22 \pm 0.09 (s.e.m.) or 0.32 \pm 0.08 for NGC 2232, depending on the adopted temperature scale. NGC 7160 exhibits solar distributions of Na, Fe-peak, and {\alpha}-elements. NGC 2232 is underabundant in light elements Al and Si, by ~0.25 and ~ 0.15 dex, respectively; [Ni/Fe] is roughly solar. The abundance of lithium in NGC 2232 stars is in agreement with undepleted values reported for other cluster main sequence stars. Our abundances are similar to other metal-rich open clusters and Galactic thin and thick disk stars.Comment: Accepted for publication in The Astronomical Journal. 10 figures, 11 tables. Full versions of the data tables can be made available upon email reques

    High Precision Abundances of the Old Solar Twin HIP 102152: Insights on Li Depletion from the Oldest Sun

    Full text link
    We present the first detailed chemical abundance analysis of the old 8.2 Gyr solar twin, HIP 102152. We derive differential abundances of 21 elements relative to the Sun with precisions as high as 0.004 dex (â‰Č\lesssim1%), using ultra high-resolution (R = 110,000), high S/N UVES spectra obtained on the 8.2-m Very Large Telescope. Our determined metallicity of HIP 102152 is [Fe/H] = -0.013 ±\pm 0.004. The atmospheric parameters of the star were determined to be 54 K cooler than the Sun, 0.09 dex lower in surface gravity, and a microturbulence identical to our derived solar value. Elemental abundance ratios examined vs. dust condensation temperature reveal a solar abundance pattern for this star, in contrast to most solar twins. The abundance pattern of HIP 02152 appears to be the most similar to solar of any known solar twin. Abundances of the younger, 2.9 Gyr solar twin, 18 Sco, were also determined from UVES spectra to serve as a comparison for HIP 102152. The solar chemical pattern of HIP 102152 makes it a potential candidate to host terrestrial planets, which is reinforced by the lack of giant planets in its terrestrial planet region. The following non-local thermodynamic equilibrium Li abundances were obtained for HIP 102152, 18 Sco, and the Sun: log Ï”\epsilon (Li) = 0.48 ±\pm 0.07, 1.62 ±\pm 0.02, and 1.07 ±\pm 0.02, respectively. The Li abundance of HIP 102152 is the lowest reported to date for a solar twin, and allows us to consider an emerging, tightly constrained Li-age trend for solar twin stars.Comment: Published in ApJL. 22 pages, 4 figures, and 1 tabl

    The Solar Twin Planet Search. V. Close-in, low-mass planet candidates and evidence of planet accretion in the solar twin HIP 68468

    Get PDF
    [Methods]. We obtained high-precision radial velocities with HARPS on the ESO 3.6 m telescope and determined precise stellar elemental abundances (~0.01 dex) using MIKE spectra on the Magellan 6.5m telescope. [Results]. Our data indicate the presence of a planet with a minimum mass of 26 Earth masses around the solar twin HIP 68468. The planet is a super-Neptune, but unlike the distant Neptune in our solar system (30 AU), HIP 68468c is close-in, with a semi-major axis of 0.66 AU, similar to that of Venus. The data also suggest the presence of a super-Earth with a minimum mass of 2.9 Earth masses at 0.03 AU; if the planet is confirmed, it will be the fifth least massive radial velocity planet discovery to date and the first super-Earth around a solar twin. Both isochrones (5.9 Gyr) and the abundance ratio [Y/Mg] (6.4 Gyr) indicate an age of about 6 billion years. The star is enhanced in refractory elements when compared to the Sun, and the refractory enrichment is even stronger after corrections for Galactic chemical evolution. We determined a NLTE Li abundance of 1.52 dex, which is four times higher than what would be expected for the age of HIP 68468. The older age is also supported by the low log(R'HK) (-5.05) and low jitter. Engulfment of a rocky planet of 6 Earth masses can explain the enhancement in both lithium and the refractory elements. [Conclusions]. The super-Neptune planet candidate is too massive for in situ formation, and therefore its current location is most likely the result of planet migration that could also have driven other planets towards its host star, enhancing thus the abundance of lithium and refractory elements in HIP 68468. The intriguing evidence of planet accretion warrants further observations to verify the existence of the planets that are indicated by our data and to better constrain the nature of the planetary system around this unique star.Comment: A&A, in pres

    The solar twin planet search

    No full text
    We present preliminary results from an ongoing radial velocity planet search around solar twins using the HARPS spectrograph. By limiting our sample to stars with Teff +/- 100 K, log(g) +/- 0.1 dex, and [Fe/H] +/- 0.1 dex of the solar values, we can obtain stellar elemental abundances [X/Fe] to a precision of 0.01 dex (Melendez et al. 2009). Our study is leveraging this unprecedented level of precision and the sensitivity of the HARPS instrument to investigate the connection between planet occurrence and stellar abundances at a new level of detail.Resumo n. 326.0
    corecore