63 research outputs found

    Faster is not always better: selection on growth rate fluctuates across life history and environments

    Get PDF
    Growth rate is increasingly recognized as a key life-history trait that may affect fitness directly rather than evolve as a by-product of selection on size or age. An ongoing challenge is to explain the abundant levels of phenotypic and genetic variation in growth rates often seen in natural populations, despite what is expected to be consistently strong selection on this trait. Such a paradox suggests limits to how contemporary growth rates evolve. We explored limits arising from variation in selection, based on selection differentials for age-specific growth rates expressed under different ecological conditions. We present results from a field experiment that measured growth rates and reproductive output in wild individuals of a colonial marine invertebrate (Hippopodina iririkiensis), replicated within and across the natural range of succession in its local community. Colony growth rates varied phenotypically throughout this range, but not all such variation was available for selection, nor was it always targeted by selection as expected. While the maintenance of both phenotypic and genetic variation in growth rate is often attributed to costs of growing rapidly, our study highlights the potential for fluctuating selection pressures throughout the life history and across environments to play an important role in this process

    The Potential for Evolutionary Responses to Cell-Lineage Selection on Growth Form and Its Plasticity in a Red Seaweed

    Get PDF
    Despite much theoretical discussion on the evolutionary significance of intraclonal genetic variation, particularly for modular organisms whose lack of germ-soma segregation allows for variants arising in clonal growth to contribute to evolutionary change, the potential of this variation to fuel adaptation remains surprisingly untested. Given intraclonal variation, mitotic cell lineages, rather than sexual offspring, may frequently act as units of selection. Here, we applied artificial selection to such lineages in the branching red seaweed Asparagopsis armata, targeting aspects of clonal growth form and growth-form plasticity that enhance light acquisition on patchy subtidal reefs and predicting that a genetic basis to intraclonal variation may promote significant responses that cannot accompany phenotypic variation alone. Cell-lineage selection increased variation in branch proliferation among A. armata genets and successfully altered its plasticity to light. Correlated responses in the plasticity of branch elongation, moreover, showed that cell-lineage selection may be transmitted among the plasticities of growth-form traits in A. armata via pleiotropy. By demonstrating significant responses to cell-lineage selection on growth-form plasticity in this seaweed, our study lends support to the notion that intraclonal genetic variation may potentially help clonal organisms to evolve adaptively in the absence of sex and thereby prove surprisingly resilient to environmental change

    Invasive ecosystem engineer selects for different phenotypes of an associated native species

    Get PDF
    Invasive habitat-forming ecosystem engineers modify the abiotic environment and thus represent a major perturbation to many ecosystems. Because native species often persist in these invaded habitats but have no shared history with the ecosystem engineer, the engineer may impose novel selective pressure on native species. In this study, we used a phenotypic selection framework to determine whether an invasive habitat-forming ecosystem engineer (the seaweed Caulerpa taxifolia) selects for different phenotypes of a common cooccurring native species (the bivalve Anadara trapezia). Compared to unvegetated habitat, Caulerpa habitat has lower water flow, lower dissolved oxygen, and sediments are more silty and anoxic. We determined the performance consequences of variation in key functional traits that may be affected by these abiotic changes (shell morphology, gill mass, and palp mass) for Anadara transplanted into Caulerpa and unvegetated habitat. Both linear and nonlinear performance gradients in Anadara differed between habitats, and these gradients were stronger in Caulerpa compared to unvegetated sediment. Moreover, in Caulerpa alternate phenotypes performed well, and these phenotypes were different from the dominant phenotype in unvegetated sediment. By demonstrating that phenotype-performance gradients differ between habitats, we have highlighted a role for Caulerpa as an agent of selection on native species

    Biochemical evolution in response to intensive harvesting in algae: evolution of quality and quantity

    Get PDF
    Evolutionary responses to indirect selection pressures imposed by intensive harvesting are increasingly common. While artificial selection has shown that biochemical components can show rapid and dramatic evolution, it remains unclear as to whether intensive harvesting can inadvertently induce changes in the biochemistry of harvested populations. For applications such as algal culture, many of the desirable bioproducts could evolve in response to harvesting, reducing cost-effectiveness, but experimental tests are lacking. We used an experimental evolution approach where we imposed heavy and light harvesting regimes on multiple lines of an alga of commercial interest for twelve cycles of harvesting and then placed all lines in a common garden regime for four cycles. We have previously shown that lines in a heavy harvesting regime evolve a live fast phenotype with higher growth rates relative to light harvesting regimes. Here, we show that algal biochemistry also shows evolutionary responses, although they were temporarily masked by differences in density under the different harvesting regimes. Heavy harvesting regimes, relative to light harvesting regimes, had reduced productivity of desirable bioproducts, particularly fatty acids. We suggest that commercial operators wishing to maximize productivity of desirable bioproducts should maintain mother cultures, kept at higher densities (which tend to select for desirable phenotypes), and periodically restart their intensively harvested cultures to minimize the negative consequences of biochemical evolution. Our study shows that the burgeoning algal culture industry should pay careful attention to the role of evolution in intensively harvested crops as these effects are nontrivial if subtle

    Data from: Interspecific competition alters nonlinear selection on offspring size in the field

    No full text
    Offspring size is one of the most important life-history traits with consequences for both the ecology and evolution of most organisms. Surprisingly, formal estimates of selection on offspring size are rare, and the degree to which selection (particularly nonlinear selection) varies among environments remains poorly explored. We estimate linear and nonlinear selection on offspring size, module size, and senescence rate for a sessile marine invertebrate in the field under three different intensities of interspecific competition. The intensity of competition strongly modified the strength and form of selection acting on offspring size. We found evidence for differences in nonlinear selection across the three environments. Our results suggest that the fitness returns of a given offspring size depend simultaneously on their environmental context, and on the context of other offspring traits. Offspring size effects can be more pervasive with regards to their influence on the fitness returns of other traits than previously recognized, and we suggest that the evolution of offspring size cannot be understood in isolation from other traits. Overall, variability in the form and strength of selection on offspring size in nature may reduce the efficacy of selection on offspring size and maintain variation in this trait

    Monro & Marshall 2014 AmNat

    No full text
    Estimates of relative growth rates and fecundity for 20 focal colonies replicated across 3 stages of succession in the field

    Guillaume et al 2015_Transgenerational plasticity_Fertilisation success data

    No full text
    Galeolaria caespitosa were collected from Brighton marina, Melbourne, Australia in 2013. Adults were brought back to Monash University for two weeks acclimation prior to fertilisation assays. The workbook contains three sheets: 'Fertilisation success', 'Egg measurements'; 'Sperm measurements'. The descriptions of column headings are available in the ReadMe file

    Data from: Evolutionary constraints and the maintenance of individual specialization throughout succession

    No full text
    Constraints on life-history traits, with their close links to fitness, are widely invoked as limits to niche expansion at most organizational levels. Theoretically, such constraints can maintain individual specialization by preventing adaptation to all niches available, but empirical evidence of them remains elusive for natural populations. This problem may be compounded by a tendency to seek constraints involving multiple traits, neglecting their added potential to manifest in trait expression across environments (i.e., within reaction norms). By replicating genotypes of a colonial marine invertebrate across successional stages in its local community, and taking a holistic approach to the analysis of ensuing reaction norms for fitness, we show the potential for individual specialization to be maintained by genetic constraints associated with these norms, which limit the potential for fitness at one successional stage to improve without loss of fitness at others. Our study provides new insight into the evolutionary maintenance of individual specialization in natural populations and reinforces the importance of reaction norms for studying this phenomenon

    Data from: Faster isn't always better: selection on growth rate fluctuates across the life history and environments

    No full text
    Growth rate is increasingly recognised as a key life-history trait that may affect fitness directly, rather than evolving as a by-product of selection on size or age. An ongoing challenge is to explain the abundant levels of phenotypic and genetic variation in growth rates often seen in natural populations, despite what is expected to be consistently strong selection on this trait. Such a paradox suggests limits to how contemporary growth rates evolve. We explored limits arising from variation in selection, based on selection differentials for age-specific growth rates expressed under different ecological conditions. We present results from a field experiment that measured growth rates and reproductive output in wild individuals of a colonial marine invertebrate (Hippopodina iririkiensis), replicated within and across the natural range of succession in its local community. Colony growth rates varied phenotypically throughout this range, but not all such variation was available for selection, nor was it always targeted by selection as expected. While the maintenance of both phenotypic and genetic variation in growth rate is often attributed to costs of growing rapidly, our study highlights the potential for fluctuating selection pressures throughout the life history and across environments to play an important role in this process
    • …
    corecore