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1  | INTRODUC TION

Humans have increasingly turned to high-intensity cultivation 
approaches to meet ever increasing demands for food, natu-
ral products and biofuels. High-yield harvesting regimes impose 

significant selection on morphology, life history and behaviour, 
and harvested populations sometimes evolve in response (Enberg, 
Jørgensen, Dunlop, Heino, & Dieckmann, 2009; Hendry et al., 2011; 
Law, 2000; Proaktor, Coulson, & Milner-Gulland, 2007; Reznick & 
Ghalambor, 2005). In turn, these evolutionary responses can alter 
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Abstract
Evolutionary responses to indirect selection pressures imposed by intensive harvest-
ing are increasingly common. While artificial selection has shown that biochemical 
components can show rapid and dramatic evolution, it remains unclear as to whether 
intensive harvesting can inadvertently induce changes in the biochemistry of har-
vested populations. For applications such as algal culture, many of the desirable bio-
products could evolve in response to harvesting, reducing cost-effectiveness, but 
experimental tests are lacking. We used an experimental evolution approach where 
we imposed heavy and light harvesting regimes on multiple lines of an alga of com-
mercial interest for twelve cycles of harvesting and then placed all lines in a common 
garden regime for four cycles. We have previously shown that lines in a heavy har-
vesting regime evolve a “live fast” phenotype with higher growth rates relative to 
light harvesting regimes. Here, we show that algal biochemistry also shows evolu-
tionary responses, although they were temporarily masked by differences in density 
under the different harvesting regimes. Heavy harvesting regimes, relative to light 
harvesting regimes, had reduced productivity of desirable bioproducts, particularly 
fatty acids. We suggest that commercial operators wishing to maximize productivity 
of desirable bioproducts should maintain mother cultures, kept at higher densities 
(which tend to select for desirable phenotypes), and periodically restart their inten-
sively harvested cultures to minimize the negative consequences of biochemical evo-
lution. Our study shows that the burgeoning algal culture industry should pay careful 
attention to the role of evolution in intensively harvested crops as these effects are 
nontrivial if subtle.

K E Y W O R D S

crop production, experimental evolution, harvesting

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ResearchOnline at James Cook University

https://core.ac.uk/display/303787681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.wileyonlinelibrary.com/journal/eva
http://orcid.org/0000-0001-6651-6219
http://creativecommons.org/licenses/by/4.0/
mailto:dustin.marshall@monash.edu


1390  |     MARSHALL et al.

the productivity and sustainability of the harvested populations, 
sometimes in negative ways (Law & Salick, 2005; Walsh, Munch, 
Chiba, & Conover, 2006).

Biochemical composition may also respond to selection—a 
range of artificial selection studies show evolution in biochem-
istry, from plants through to insects and fish. One of the best 
known examples of responses to direct selection on biochemis-
try comes from the Illinois long-term selection experiment, where 
more than 100 years of selection has altered the oil content of 
maize. Examples of biochemical evolution in response to indirect 
selection imposed by harvesting are rarer, however, and the re-
sults of the few such studies are mixed. For example, Redpath, 
Cooke, Arlinghaus, Wahl, and Philipp (2009) found no difference 
in lipid, protein or carbohydrate content between largemouth 
bass selected for different levels of vulnerability, despite marked 
changes in growth rates. In contrast, Moreno et al. (2016) found 
that selected lines of salmon showed major changes in amino acid 
composition relative to unselected wild types. Thus, the extent 
to which culture and harvesting induces biochemical changes in 
target populations remains unclear. This knowledge gap is partic-
ularly important given many harvested populations are targeted 
specifically for their biochemical properties, and if these proper-
ties change, then the value of the crop may also change.

Evolutionary changes in biochemistry in response to harvesting 
regimes are of particular interest in algal production, yet the poten-
tial for such changes has gone largely unexplored. The production 
of algae in intensive land-based culture systems is a relatively new 
approach with significant commercial potential and interest, partic-
ularly with regard to algal biochemistry. Algae have been proposed 
as substrates for a broad range of biofuels (Brennan & Owende, 
2010; Elliott, Biller, Ross, Schmidt, & Jones, 2015; Mata, Martins, 
& Caetano, 2010; Rowbotham, Dyer, Greenwell, & Theodorou, 
2012), and as a source of new bioproducts and animal feed (Gosch, 
Magnusson, Paul, & Nys, 2012; Jiménez-Escrig, Gómez-Ordóñez, & 
Rupérez, 2012; Li, Wijesekara, Li, & Kim, 2011; Pulz & Gross, 2004). 
A key concern here is the productivity of biochemical components 
(lipid, protein, carbohydrate) per unit area of cultivation—whether 
this productivity evolves in response to intensive harvesting remains 
unclear.

What is typically proposed for the intensive production of algae 
in land-based systems is the production of a single species through 
asexual propagation, or fragmentation followed by cell division. Such 
systems are characterized by the continuous culture of algae at high 
densities and periodic, incomplete harvesting of the standing stock 
(Capo, Jaramillo, Boyd, Lapointe, & Serafy, 1999; Mata, Magnusson, 
Paul, & de Nys, 2015; Moheimani & Borowitzka, 2006; Rodolfi et al., 
2009). A key requirement for commercial algal production is that the 
per unit area production of desirable biochemical qualities of the 
focal species is maintained despite intensive harvesting. Yet, few 
studies have determined whether harvesting regimes induce evolu-
tion in algal biochemistry. Given harvesting is likely to impose strong 
selective pressures, evolutionary responses in algal biochemistry are 
likely and could quickly reduce productivity.

There is evidence that key elements of algal biochemistry are 
evolutionarily labile. For example, targeted artificial selection on 
biochemical components can induce change in lipids and carbo-
hydrates (Hathwaik et al., 2015). Given the observed negative 
changes in life history and morphology that often evolve in re-
sponse to intense harvesting more generally, it is possible that 
similar negative changes could occur during algal production. 
However, we are not aware of any study that has explored evo-
lutionary responses in algal biochemistry to the indirect selec-
tion associated with high-intensity harvesting regimes. As such, 
the risks such evolution poses to commercial operations remain 
unknown.

Here, we evaluate the evolutionary consequences of high-
yield harvesting regimes for the production of a freshwater green 
alga from the genus Oedogonium in intensive culture systems. 
Oedogonium is a cosmopolitan genus of filamentous freshwater 
green macroalgae that has a worldwide distribution and is a com-
mon component of natural ecosystems. It is an unbranched, unise-
riate green alga made up of small cylindrical cells. Oedogonium is a 
robust and competitively dominant genus that has been identified 
as a target for the treatment of freshwater waste streams (Cole, de 
Nys, & Paul, 2014; Roberts, de Nys, & Paul, 2013) and as a feed-
stock biomass for bioenergy applications (Lawton, de Nys, & Paul, 
2013; Neveux, Magnusson, Maschmeyer, de Nys, & Paul, 2014; 
Neveux, Yuen, et al., 2014). We created replicate lines for three 
Oedogonium strains to 12 weeks of different harvesting regimes. At 
the end of 12 weeks, all cultures from both treatments were main-
tained for a further 4 weeks under a medium-yield common garden 
regime (Garland & Rose, 2009). In a previous analysis of the same 
experimental evolution experiment, we examined growth rates and 
biomass productivity (Lawton, Paul, Marshall, & Monro, 2017). We 
demonstrated that harvesting regimes generate evolutionary re-
sponses for some commonly measured growth metrics, but once 
this is standardized for the ash-free dry biomass productivity (e.g., 
total productivity), total productivity is fairly similar between har-
vesting regimes. In that study however, we did not examine changes 
in algal biochemistry. From a practical perspective, the productivity 
(mass of bioproduct per unit area per unit time) of the desirable bi-
oproducts is the most important metric (as opposed to concentra-
tion of bioproducts per unit biomass). Thus, in this study, we focus 
on the productivity rather than the concentration of the desirable 
bioproducts. The key biochemical components for algal production 
that are of commercial interest are oils (particularly omega-3 fatty 
acids), as well as key amino acids such as lysine and methionine. In 
addition to these specific components, which can be extracted first 
and are the most lucrative constituents, the residual meal (mostly 
carbohydrate) can be used for bioenergy applications, such that the 
higher heating value of the whole biomass is an appropriate measure 
of energy potential. First, we examined the relative levels of energy 
and the proximate analyses of lipid, carbohydrate and protein and, 
then, separately compare the content of each component and the 
productivity (amount produced per unit area). Next, we examined 
the key biochemical components of particular interest to industry, 
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including omega-3 and omega-6 polyunsaturated fatty acids and the 
key essential amino acids.

2  | MATERIAL S AND METHODS

2.1 | Sample collection and isolation

This experiment used three strains of Oedogonium—Tsv1, Tsv2 
and Tsv11—that were originally isolated from samples collected 
from naturally occurring water bodies and wetland areas around 
Townsville, Queensland, Australia (Lawton, de Nys, Skinner, & Paul, 
2014; Appendix S1). All three strains are genetically distinct from 
each other (Lawton et al., 2014). Tsv2 was identified as O. inter-
medium using taxonomic keys (Entwisle, Skinner, Lewis, & Foard, 
2007). It was not possible to identify Tsv1 or Tsv11 to species level 
as specific morphological characteristics were not visible in either 
strain and their ITS sequences did not match the ITS sequences of 
any Oedogonium species in Genbank (Lawton et al., 2014, Appendix 
S1). Following isolation, strains were maintained in nutrient-
enriched autoclaved freshwater in a temperature and light con-
trolled laboratory (12:12 light:dark cycle, 50 μmol photons m−2 s−1, 
23°C) at James Cook University (JCU) for at least 2 years prior to 
the experiment. Stock cultures of each strain were established 
in 1000-L plastic tanks maintained in a glasshouse with ambient 
natural light at the Marine and Aquaculture Research Facility Unit, 
James Cook University. Each culture strain was founded from a sin-
gle filament so all genetic variation came from de novo mutations 
from the original wild type. Cultures were provided with aeration 
by a continuous stream of air entering the cultures through multi-
ple inlets around the base of the tanks. Stock cultures were main-
tained for 3 weeks under these conditions prior to the start of the 
experiment.

Nutrient enrichment in the laboratory maintenance conditions 
was the same as that used under experimental conditions (0.05 g/L 
enrichment with MAF growth medium, Manutech Pty Ltd, 13.4% N, 
1.4% P). Densities in the laboratory maintenance conditions varied 
somewhat over time, but were maintained around a long-term aver-
age of 1 g FW/L. This is the same density that outdoor stock cultures 
of each strain were maintained during the 3-week period prior to 
the start of the experiment and that cultures were maintained under 
during the four cycles of common garden in the last 4 weeks of the 
experiment.

2.2 | Selection experiment

Twenty replicate monocultures of each strain containing equal quan-
tities of fresh weight (FW) biomass were established. Ten replicate 
cultures of each strain were randomly assigned as high-yield har-
vest, and 10 replicate cultures were randomly assigned as low-yield 
harvest. High-yield and low-yield harvest treatments were created 
by resetting the stocking density of cultures at each harvest to a 
specified value. The high-yield harvest cultures were stocked at an 
initial density of 0.5 g FW/L, and low-yield harvest cultures were 

stocked at an initial density of 2 g FW/L. These stocking densities 
were chosen based on average growth rates recorded in our produc-
tion system and data from a growth curve experiment (Lawton et al., 
2017). These stocking densities mean that approximately 70% of the 
biomass is removed at each harvest for the high-yield harvest treat-
ment and 20% of the biomass is removed for the low-yield harvest 
treatment.

Cultures were grown in 20-L plastic buckets in a glasshouse 
with ambient natural light at the Marine and Aquaculture Research 
Facility Unit, JCU. Culture water was enriched (0.05 g/L) with MAF 
growth medium (Manutech Pty Ltd, 13.4% N, 1.4% P). Buckets were 
placed in a water bath with continuous flow to minimize large tem-
perature fluctuations. Average water temperature throughout the 
experiment was 25.6°C (±0.7 SD), and cultures received an aver-
age total photosynthetically active radiation of 150 mol photons 
m−2 week−1 (±33 SD). Cultures were provided with aeration by a con-
tinuous stream of air entering the cultures through multiple inlets 
around the base of the buckets.

Every 7 days, each culture was harvested, and the biomass 
was briefly spun in a centrifuge to remove excess water and then 
weighed to determine the FW. The same biomass was then re-
stocked back into each culture, with stocking density reset back to 
the relevant treatment level (0.5 or 2 g FW/L) by removing excess 
biomass. Biomass from each culture was kept separate and never 
mixed, enabling maintenance of a pure “line” of biomass through-
out the experiment. Due to the fast vegetative (clonal) growth of 
Oedogonium filaments in intensive culture systems, the biomass 
restocked into cultures following harvesting each week can be 
considered to be a new clonal “generation” (Lawton, Carl, de Nys, 
& Paul, 2015). All excess biomass from each culture not used for 
restocking was weighed to determine the FW, dried in an oven at 
65°C for at least 48 hr and then reweighed to determine the fresh 
weight:dry weight ratio (FW:DW) for each individual culture. This 
entire process was repeated every week for a total of 12 weeks, 
resulting in 12 cycles of differential selection (high-yield/low-yield 
harvest treatments). The process was then repeated for a further 
4 weeks, with stocking densities of all cultures reset to 1 g FW/L 
following harvesting. These 4 weeks represent four cycles of com-
mon garden conditions. A stocking density of 1 g FW L is equiv-
alent to a medium-yield harvesting treatment and means that 
approximately 50% of the biomass is removed at each harvest. 
Thus, the maximum possible proportion of algal cells that could be 
retained from the 12-week differential selection period after com-
mon garden 4 weeks was 6.25% and this assumes that individual 
algal cells live for longer than 4 weeks. Overall then, any persistent 
differences in mean phenotype between selection regimes after 
16 weeks can be attributed to genetic change rather than residual 
environmental effects.

The experiment was run from March to April 2015 in North 
Queensland, Australia (19.26°S, 146.82°E). This time period cor-
responds to the end of the tropical wet season and the start of 
the dry season. During this time of year, the day length is around 
12 hr.
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2.3 | Cell morphology

Cell volume was analysed in three randomly chosen replicate cul-
tures from each strain x treatment combination, based on small 
samples of excess biomass that had been preserved in Lugol’s so-
lution (1%) at week 12 (end of differential selection) and week 16 
(end of common garden selection). Four replicate subsamples of 
each preserved sample were viewed under a compound microscope 
(Olympus model BX53) at 20× magnification. The width and length 
of a single cell were measured using Olympus cellSens software (V. 
1.7) on each of five replicate branches per subsample, and cell vol-
ume calculated from these measurements as πr2 (where r was half 
the cell width).

2.4 | Biochemical analyses—comparison of 
differential harvesting and common garden

Dried biomass (three randomly chosen replicate cultures from each 
treatment and strain combination) at the end of differential selection 
(week 12), and the end of common garden selection (week 16 of the 
selection experiment) was analysed for carbon, hydrogen, oxygen, 
nitrogen, sulphur and phosphorus (ultimate analysis), ash content 
and total lipid, protein and carbohydrate content.

To examine temporal changes in biochemical properties from 
the beginning of the experiment to the end, we had planned to 
use dried week 0 samples as a baseline but a storage error meant 
that these samples were unavailable. Thus, we used dried biomass 
samples from week 1 in their stead on the assumption that few 
biochemical changes had occurred within 1 week, particularly as 
a large proportion of biomass in each sample would have been 
present at week 1. Nevertheless, we acknowledge that the week 1 
samples are an imperfect estimate of the original condition as some 
change must have occurred. From a practical perspective, temporal 
changes in biochemistry are inevitable due to differences in cul-
ture conditions, and seasonal changes in temperature and light (our 
experiments were carried out outdoors so as to be as realistic as 
possible). Producers are not interested in temporal changes in phe-
notypes per se, rather how different harvesting regimes alter the 
productivity of desirable bioproducts and so our main comparisons 
of interest are the differences among harvesting regimes at the end 
of the experiment.

There was not sufficient biomass to allow analysis of all bio-
chemical characteristics for some replicate cultures. In these 
cases, biomass was analysed for ash, CHONPS and total lip-
ids in order of priority until no biomass was left and another 
replicate culture from the same treatment was used for the 
remaining analyses. Ultimate analysis was outsourced to OEA 
laboratories (http://www.oealabs.com/), while % oxygen was 
calculated as %O = 100−∑(C, H, N, S, ash) where C, H, N, S and 
ash are expressed as a percentage of the total mass. Ash con-
tent was determined by combusting a 100–300 mg subsample 
of dried biomass at 550°C in a muffle furnace until constant 
weight was reached. Total lipid content (% DW) was determined 

as described in Gosch et al. (2012), while protein was calculated 
based on the ultimate analysis of nitrogen content (% DW) of 
the biomass multiplied with a protein to nitrogen factor of x 
4.7 (Neveux, Magnusson, et al., 2014), and carbohydrate was 
calculated by difference as 100−∑(lipid, protein, ash) where 
lipids, proteins and ash are expressed as a percentage of the 
total weight. The carbohydrate, protein and lipid productivities 
(g DW m−2 day−1) of each strain were calculated for each treat-
ment by multiplying the DW productivity of each replicate from 
week 12 and 16 of the experiment by its carbohydrate, protein 
or lipid content (% DW).

To quantify the suitability of the biomass as a potential energy 
feedstock, the higher heating value (HHV) was calculated for each 
sample using the concentrations of carbon, hydrogen, oxygen, nitro-
gen and sulphur calculated as described above. The HHV is based on 
the elemental composition of the biomass and is a measure of the 
amount of energy stored within. The HHV was calculated using the 
equation HHV (MJ/kg) = 0.3491*C + 1.1783*H + 0.1005*S−0.1034*
O−0.0151*N−0.0211*ash, where C, H, S, O, N and ash are the car-
bon, hydrogen, sulphur, oxygen, nitrogen and ash mass percentages 
of the algae on a dry basis (Channiwala & Parikh, 2002). The energy 
productivity (MJ m−2 day−1) was calculated for each treatment by 
multiplying the DW productivity (converted to kg DW m−2 day−1) of 
each replicate from week 12 and 16 of the experiment by its HHV 
(MJ/kg).

2.5 | Biochemical analyses—fatty acid and amino 
acid comparisons after common garden selection

The fatty acid composition and amino acid composition of biomass 
at the end of common garden regime (week 16) were quantified for 
the same three replicate cultures chosen for biochemical analyses 
above. Fatty acid composition and amino acid composition were only 
quantified in samples taken at the end of common garden phase to 
determine whether there were long-term effects of selection on in-
dividual metabolites that may have been masked by the proximate 
analysis. A direct transesterification method was used to simultane-
ously extract and esterify the fatty acids to fatty acid methyl esters 
(FAMEs) for analysis by gas chromatography mass spectrometry 
(GC–MS; 7890A GC, 5975C MS, DB-23 capillary column with 15 μm 
cyanopropyl stationary phase, 60 m length and 0.25 mm inner diam-
eter (Agilent Technologies Australia Pty Ltd.), as described in detail 
in Gosch et al. (2012). The content of total fatty acids (TFA) was de-
termined as the sum of all FAMEs with fatty acids being designated 
as CX:Y(n-z), where X is the total number of carbon, Y is the number 
of double bonds, and z is the position of the ultimate double bond 
from the terminal methyl group. In our previous work, we showed 
that there are sometimes quantifiable effects on the content or rela-
tive growth rates due to harvest, but these effects are not detected 
at the system level of cultures (Lawton et al., 2017). Therefore, we 
also formally analyse the fatty acid productivities (g DW m−2 day−1; a 
system production metric) of each strain, which were calculated for 
each treatment by multiplying the DW productivity of each replicate 

http://www.oealabs.com/
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from week 12 to 16 of the experiment by its fatty acid content (mg/g 
algal DW).

Amino acids were analysed after liquid hydrolysis in 6 M HCl 
for 24 hr at 110°C using a Waters ACQUITY UPLC at the Australian 
Proteome Analysis Facility, Macquarie University, Sydney, using 
procedures based on the Waters AccQTag amino acid methodology 
(Bosch, Alegría, & Farré, 2006; Cohen & Fong, 2004). All cultures 
were analysed for aspartic acid, asparagine, glutamic acid, gluta-
mine, serine, histidine, glycine, threonine, alanine, arginine, tyrosine, 
valine, methionine, phenylalanine, isoleucine, leucine, lysine and 
proline. As asparagine is hydrolysed to aspartic acid and glutamine 
to glutamic acid during analysis, the sum of these amino acids was 
reported as asparagine/aspartic acid or glutamic acid/glutamine. 
Cysteine tryptophan and taurine were not analysed as these require 
different analytical methods and represent only a very small fraction 
(<2%) of the total amino acids present in green macroalgae (Angell, 
Mata, de Nys, & Paul, 2014; Angell, Pirozzi, De Nys, & Paul, 2012). 
The amino acid productivities (g DW m−2 day−1) of each strain were 
calculated for each treatment by multiplying the DW productivity of 
each replicate from week 12 and 16 of the experiment by its amino 
acid content (mg g algal/DW).

For all our analyses, clonal line was the unit of replication where 
strain and treatment were fixed effects. We analysed the various 
biochemical constituents at week 12 and week 16 separately be-
cause we used much more detailed biochemical analyses in week 16 
relative to week 12.

3  | RESULTS

3.1 | Proximate components and energy

After 12 weeks of the harvesting selection regime, there were strong 
interactions between strain and harvesting regime on higher heat-
ing value (HHV) and lipids. HHV and lipids were higher in the heavy 
harvesting regime for strains Tsv1 and Tsv11 relative to the light 
harvesting regime, but there was no difference for Tsv2 (Table 1; 
Figures 1 and 2). There was a strong effect of harvesting regime on 
protein across all three strains, however, with higher productivity of 
protein in the heavy harvest regime (Figure 3). Relative to levels at 
week 1 of harvesting, carbohydrates tended to similar or lower than 
original levels (depending on the harvesting regime), HHV was un-
changed and lipids and proteins tended to be lower (Table 2). These 
temporal changes could be due to the experimental conditions or 
seasonal variation.

Once the selection lines were placed in the common garden 
harvesting regime for 4 weeks (week 16), the effects of the 12-
week harvesting period largely reversed (Figure 1, 2 and 3). The 
harvesting regime x strain interactions dissipated for all compo-
nents, leaving only a main effect of harvesting regime for lipid 
(Table 3). In contrast to week 12, where heavy harvesting tended 
to have higher values (in two of three strains), once in a com-
mon garden regime, heavy harvesting selected lines had lower 
lipid productivity than light harvesting selected lines (Figure 2). 

Lipid levels in both heavy and light regimes were slightly higher 
than earlier (week 1) levels, but again it is unclear whether these 
changes were associated with seasonal effects or experimental 
condition. Similar, though nonsignificant trends were observed 

TABLE  1 Effect of harvesting regime on the productivity of 
higher heating value (HHV), lipids and protein in Oedogonium after 
differential selection (12 weeks)

Component Source df F p

HHV Strain × Treat 2 4.95 .022

Lipid Strain × Treat 2 6.52 .009

Protein Strain 2 1.09 .360

Treat 1 12.93 .002

Strain × Treat 2 1.46 .264

Error 15

Significant differences indicated in bold.

F IGURE  1 Higher heating value (HHV) (means ± SE) of three 
different strains after 12 weeks of differential selection (left 
panel) and after 12 weeks of differential selection plus 4 weeks of 
common garden selection (right panel) in Oedogonium

F IGURE  2 Lipid values of three different strains (means ± SE) 
after 12 weeks of differential selection (left panel) and after 
12 weeks of differential selection plus 4 weeks of common garden 
selection (right panel) in Oedogonium
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for HHV and carbohydrate with slight decreases in productivity 
in the heavy harvest regime relative to the light regime (Figure 1 
and 3). Relative to earlier levels, carbohydrate decreased mark-
edly, while HHV remained at similar levels (Table 2). Protein, while 
not significantly different between harvesting regimes, was higher 
in the light harvesting regime relative to earlier levels but largely 
unchanged in the heavy regime.

3.2 | Fatty acids and amino acids

Specific components in the selected lines showed persistent changes 
in response to the selection regime after selection had been relaxed 
(Table 4). Generally, the productivity of desirable bioproducts de-
creased in the heavy harvested regime, particularly for fatty acids 
but also for lysine (Figures 4 and 5).

For omega-3 fatty acids, as well as the aggregate total fatty acids, 
polyunsaturated and saturated fatty acids, the effect of harvesting re-

gime was consistent with similar levels of reduced productivity of all in 
the heavy harvest regime relative to the light harvest regime (Figure 4).

For the amino acids, algae in the heavy harvest regime pro-
duced less lysine compared to algae in the light harvest regime, 
regardless of strain (Table 4, Figure 5). For the rest of the amino 
acids, there were indications of strain-specific effects but these 
were not definitive nor were they consistent among different 
amino acids.

3.3 | Cell volume

Cell volume differed slightly though not significantly between 
the harvest treatments at the end of differential selection (week 
12; F1,12 = 3.66, p = .08). These differences were inconsistent 
among strains (Strain x Treat: F2,12 = 3.42, p = .066) and strains 
differed much more regardless of treatment (Strain: F2,12 = 173.5, 
p < .001). At this time, cell volume was larger in the low-yield 
treatment compared to the high-yield treatment for Tsv1, and 
Tsv11, but marginally smaller in the low-yield treatment com-
pared to the high-yield treatment for Tsv2. By the end of the 

F IGURE  3 Protein values (means ± SE) of three different strains 
after 12 weeks of differential selection (left panel) and after 
12 weeks of differential selection plus 4 weeks of common garden 
selection (right panel) in Oedogonium

Component Selection

Week Ratio

1 12 16 12:1 16:1

Protein Heavy 22.5 23 24 1.03 1.07

Light 21.1 27 26 1.28 1.23

Lipid Heavy 10.2 8.4 11.1 0.82 1.09

Light 10.3 9.5 12.2 0.91 1.18

HHV Heavy 19.2 19.6 19.8 1.02 1.03

Light 19.2 19.7 20.2 1.02 1.05

Carbohydrate Heavy 62.9 55.2 54.3 0.87 0.86

Light 60.4 61.0 58.1 1.00 0.96

TABLE  2 Comparisons of 
productivities (grams dry 
weight m−2 day−1) of Oedogonium cultures 
for various coarse bioproducts across 
different weeks and selection regimes. 
Final two columns show ratios of 
productivity of week 1 vs week 12 and 16

TABLE  3 Effect of harvesting regime on the productivity of 
higher heating value (HHV), lipids and protein in Oedogonium after 
common garden regime (4 weeks of identical selection following 
12 weeks of differential selection)

Component Source df F p

HHV Strain 2 0.80 .469

Treat 1 3.13 .099

Strain × Treat 2 0.30 .745

Error 14

Lipid Strain 2 5.97 .013

Treat 1 12.48 .003

Strain × Treat 2 0.80 .470

Error 14

Protein Strain 2 3.57 .056

Treat 1 0.10 .757

Strain × Treat 2 0.36 .708

Error 14

Significant differences indicated in bold.
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common garden treatment (week 16), only a difference between 
strains remained (Treat: F2,12 = 111.04; p < .001).

4  | DISCUSSION

We found that harvesting intensity generated changes in the bi-
ochemistry of an alga of commercial importance (summarized in 
Table 5). While the two harvesting regimes generated biochemi-
cal differences between our lines, the nature of these changed 
once the lines were placed in the same, common garden regime. 
These changes suggested that the differences in environmental 
conditions during harvesting temporarily masked the underlying 
evolutionary responses to selection. Generally, algae grown under 
the heavy harvest regime had much lower lipid production once 
placed into a common garden regime. Our results suggest that 
different harvesting regimes alter the evolutionary trajectories of 
algae and heavy harvesting reduces the yield of desirable prod-
ucts. Although undesirable from an applied perspective, these 
evolutionary changes were largely in accordance with what might 
be expected from a general life-history perspective and our un-
derstanding of algal biology. Importantly, modifications to exist-
ing large-scale culture approaches should mitigate or reduce these 
undesirable impacts.

Both the heavy and light harvesting regimes changed relative to 
earlier (week 1 levels), but interpreting the drivers of these temporal 
changes is difficult. Because we conducted our study under realistic 
conditions in the open, the temperature and light regime varied over 
the course of the experiment, and both have known effects on algal 
phenotypes. Thus, any temporal changes across both treatments 
could simply reflect environmental variation. On the other hand, 
some effects could be driven by the experimental conditions com-
mon to both harvesting regimes relative to the original stock condi-
tions from which algae we sourced. Thus, we cannot definitively say 
that heavy harvesting reduced productivity rates of desirable bio-
products relative to the original phenotype; rather, we must restrict 
all of our comparisons between the different harvesting regimes at 
any one point in time. Importantly, this is the comparison of most 
practical relevance to aquaculture as producers need to understand 
the consequences of different harvesting regimes.

The two harvest regimes created very different selection pres-
sures on our study species. We already know that the heavy harvest 
regime favoured rapid growth rates over the harvest cycle (Lawton 
et al., 2017). Any phenotypes that failed to proliferate between har-
vesting bouts were likely to be eliminated from the cultures through 
simple sampling effects—phenotypes in low abundance were un-
likely to be retained in the nonharvested fraction used as starter 
stock after each harvest. Accordingly, we have previously shown 
that specific growth rates evolved to be faster in the heavy harvest 
regimes (Lawton et al., 2017). It is possible that the heavy harvest 
regime favoured a “live fast” phenotype relative to the light harvest 
regime, but growth rate was not the only trait that was likely to be 
under selection.

TABLE  4 Analyses of amino acid (AA) and fatty acid (FA) 
productivity after common garden regime (4 weeks of identical 
selection following 12 weeks of differential selection) across strains 
of Oedogonium

Component Source df F p

Lipid

Total FA Strain 2 3.51 .058

Treat 1 11.76 .004

Strain × Treat 2 0.51 .614

Error 12

Saturated FA Strain 2 7.89 .005

Treat 1 7.29 .017

Strain × Treat 2 0.01 .987

Error 12

MUFA Strain 2 7.02 .008

Treat 1 0.94 .350

Strain × Treat 2 2.97 .089

Error 12

PUFA Strain 2 3.61 .054

Treat 1 19.12 .001

Strain × Treat 2 1.35 .297

Error 12

Omega-3 Strain 2 24.34 <.001

Treat 1 63.55 <.001

Strain × Treat 2 0.42 .667

Error 12

 Omega-6 Strain 2 4.22 .037

Treat 1 1.18 .296

Strain × Treat 2 2.60 .116

Error 12

Protein

Nonessential AA Strain 2 2.04 .167

Treat 1 0.10 .761

Strain × Treat 2 1.08 .371

Error 12

Essential AA Strain 2 3.82 .047

Treat 1 0.72 .411

Strain × Treat 2 0.28 .763

Error 12

Methionine Strain 2 3.89 .686

Treat 1 1.02 .329

Strain × Treat 2 0.40 .677

Error 12

Lysine Strain 2 4.98 .023

Treat 1 26.00 <.001

Strain × Treat 2 3.25 .074

Error 12

MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids.
Significant differences indicated in bold.
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The two harvest regimes generated very different resource 
conditions, both in terms of mean and variance. In the heavy har-
vest regime, a large proportion of biomass was removed each time, 

such that the mean ratio of resources (both nutrients and light) to 
biomass was much greater in the heavy harvest regime relative to 
the light harvest regime. This difference in ratios arises because the 
heavy harvest cultures were reduced to a much lower biomass each 
stocking time, while the amount of resources we supplied to each 
culture remained unchanged (such conditions reflect standard cul-
ture practices). Furthermore, because populations under the two 
regimes attained very similar biomasses just before harvesting, the 
range of biomass:resource ratios experienced by the heavy harvest 
lines was much greater than the range of ratios experienced by the 
lighter harvest lines. We will now consider our results in the light of 
these differences in resources.

We found that under heavy harvesting regimes, where resources 
(both light and nutrients) were both more abundant and more vari-
able and faster growth was favoured, the protein content of algae 
was higher after 12 weeks of selection. This phenotypic difference 
in protein matches other studies of algae, where algae grown under 
higher nitrogen conditions tend to have higher protein contents 
(Renauld et al., 1991; Uttin, 1985). Once the differences in culture 
conditions were removed under the common garden regime, the 
algae under both regimes had similar levels with regard to protein. 
However, the placement into common garden conditions revealed 
evolutionary difference that persisted for one amino acid (lysine) 
and most fatty acids. Importantly, these shifts were undesirable 
from a commercial perspective.

Our results suggest that industrial applications of algal culture 
face a paradox. On the one hand, intensive harvesting leads to more 
rapid growth rates, higher protein productivity (at least initially) 
and higher biomass yields overall. On the other hand, productivity 
of other desirable products (fatty acids, lysine) goes down. The ap-
parent benefit of the heavy harvesting regime for protein produc-
tivity is probably driven by the fact that these cultures periodically 
experience higher nutrient regimes (immediately following a heavy 
harvest). These effects mask a gradual decline in lipid productivity 
relative to the light harvesting regime that only manifests once the 
different cultures are grown under the same conditions—it is likely 
that these differences would have eventually appeared even under 
the differential harvesting regimes had we continued the experiment 
for even longer but we can only speculate in the absence of data. It 
seems that producers face a trade-off between productivity of bio-
mass and productivity of desirable products such as fatty acids and 
lysine. Importantly, if we had presented raw concentrations of desir-
able products (as opposed to productivity), we would have overesti-
mated the impact of the intensive harvesting regime—concentrations 
of desirable products drop substantially relative to the light regime. 
However, because total productivity goes up with more intensive 
harvesting regimes, the productivity of some desirable products 
decreases by a less substantial margin. Nevertheless, given we ob-
served significant drops in the productivity of desirable products in 
the short term, this suggests that heavy harvesting effects compli-
cate commercial efforts.

Our experiment suggests that heavy harvesting selects for phe-
notypes that are less desirable from a commercial perspective, but 

F IGURE  4 Fatty acid (FA) (means ± SE) content of Oedogonium 
under differential selection regimes after 12 weeks of 
differential plus 4 weeks of common garden selection. n-3 PUFA, 
polyunsaturated omega-3 fatty acids; SFA, saturated fatty acids; 
TFA, total fatty acids
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our study also suggests a relatively practical solution to this issue. 
We found that cultures maintained at relatively high densities (the 
light harvest regime) retained their desirable qualities in terms of 

higher heating value, lipids, carbohydrates and protein (all were al-
most identical to earlier levels). As such, we suggest maintaining high-
density “mother cultures” to periodically restart harvest culture. Thus, 

F IGURE  5 Amino acid (AA) content (means ± SE) of Oedogonium under differential selection regimes after 12 weeks of differential plus 
4 weeks of common garden selection

Component Strain × Treatment Treatment Heavy harvesting Light Harvesting

HHV No No

Lipid No Yes ↓ ↑

Total FA No Yes ↓ ↑

Saturated FA No Yes ↓ ↑

MUFA No No

PUFA No Yes ↓ ↑

Omega-3 No Yes ↓ ↑

Omega-6 No No

Protein No No

Nonessential AA No No

Essential AA No No

Methionine No No

Lysine No Yes ↓ ↑

Cell volume No No

MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids.
Arrows indicates values significantly lower in the heavy harvesting regime. See Supplementary fig-
ures for graphical representation of fatty acid (FA) and amino acid (AA).

TABLE  5 Summary of effects of 
harvesting regime on strain-specific and 
main effects on Oedogonium biochemistry 
and cell morphology after common garden 
regime (4 weeks of identical selection 
following 12 weeks of differential 
selection)



1398  |     MARSHALL et al.

producers should be able to maintain the more desirable phenotypes 
while maximizing production more generally. Fortunately, the use of 
mother cultures of many microalgae with high-value products is the 
operational norm to minimize the effects of predation, fouling or 
disease.

The biochemical components of different Oedogonium strains 
often responded differently to harvesting. Once harvesting con-
ditions were the same however, idiosyncrasies among strains 
subsided and resolved into consistent differences between the 
heavy and light harvesting regimes. This implies that selection 
induced both some transient and some relatively stable changes 
in biochemistry that could reflect a combination of nongenetic 
and genetic mechanisms, respectively. The goal of our experi-
ment was to exploit the latter, based on considerable evidence 
of heritable variation (e.g., due to somatic mutation) arising 
within clonal lineages of diverse taxa during growth (Fagerström, 
Briscoe, & Sunnucks, 1998; Gill, Chao, Perkins, & Wolf, 1995; 
Whitham & Slobodchickoff, 1981). Intraclonal variation of this 
kind can accumulate remarkably rapidly in several groups of 
macroalgae (Meneses, Santelices, & Sanchez, 1999; Poore & 
Fagerström, 2000) and especially in fast-growing, filamentous 
forms like Oedogonium (Lawton et al., 2015; Monro & Poore, 
2009). Similar to our results, past efforts to select upon intra-
clonal variation in red macroalgae have yielded responses that 
were consistent among genotypes for some traits and genotype-
specific for others (Monro & Poore, 2009), suggesting that the 
mutational target size of traits determines the amount of vari-
ation that becomes available for selection or that genotypes/
strains differ in the rate that variants accumulate. Nevertheless, 
past work has shown that clonal propagation can also generate 
persistent nongenetic effects on trait expression (Schwaegerle, 
2005), analogous to parental effects in sexual organisms. Hence, 
it is possible that such effects contributed to the significant 
strain x treatment effects on biochemistry during the differen-
tial harvesting regimes, but were eventually lost from strains 
under common garden conditions.

We find evidence for evolutionary-derived differences in key 
biochemical components in an algal species of commercial inter-
est under different harvesting regimes. Whether such differences 
are likely to occur more generally remains unclear at this stage 
but given the rapidly growing interest in algal aquaculture and the 
intensive harvesting regimes to which they will be subjected, such 
evolutionary responses seem likely. As the optimization of large-
scale algal culture continues, we suggest that such programmes 
consider the role that evolutionary responses may play in altering 
yields.

ACKNOWLEDG EMENTS

We thank M. Martinez, T. Mannering, N. Neveux and T. Carl for assis-
tance with experiments. This project was supported by MBD Energy 
Ltd and the Centre for Geometric Biology, Monash University. The 
sponsors had no involvement in study design; in the collection, 

analysis and interpretation of data; in the writing of the report and in 
the decision to submit the article for publication.

CONFLIC T OF INTERE S T

None declared. 

DATA ARCHIVING S TATEMENT

The raw data underlying the main results are available from the 
Dryad Digital Repository: https://doi.org/10.5061/dryad.sg4hb67.

ORCID

Dustin J Marshall   http://orcid.org/0000-0001-6651-6219 

R E FE R E N C E S

Angell, A. R., Mata, L., de Nys, R., & Paul, N. A. (2014). Variation in amino 
acid content and its relationship to nitrogen content and growth rate in 
Ulva ohnoi (Chlorophyta). Journal of Phycology, 50(1), 216–226. https://
doi.org/10.1111/jpy.12154

Angell, A. R., Pirozzi, I., De Nys, R., & Paul, N. A. (2012). Feeding prefer-
ences and the nutritional value of tropical algae for the abalone Haliotis 
asinina. PLoS ONE, 7(6), e38857. https://doi.org/10.1371/journal.
pone.0038857

Bosch, L., Alegría, A., & Farré, R. (2006). Application of the 6-aminoquino
lyl-N-hydroxysuccinimidyl carbamate (AQC) reagent to the RP-HPLC 
determination of amino acids in infant foods. Journal of Chromatography 
B, 831(1–2), 176–183. https://doi.org/10.1016/j.jchromb.2005.12.002

Brennan, L., & Owende, P. (2010). Biofuels from microalgae—a review of 
technologies for production, processing, and extractions of biofuels and 
co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577. 
https://doi.org/10.1016/j.rser.2009.10.009

Capo, T., Jaramillo, J., Boyd, A., Lapointe, B., & Serafy, J. (1999). Sustained 
high yields of Gracilaria (Rhodophyta) grown in intensive large-scale 
culture. Journal of Applied Phycology, 11(2), 143–147. https://doi.
org/10.1023/A:1008077722769

Channiwala, S., & Parikh, P. (2002). A unified correlation for estimating HHV 
of solid, liquid and gaseous fuels. Fuel, 81(8), 1051–1063. https://doi.
org/10.1016/S0016-2361(01)00131-4

Cohen, R., & Fong, P. (2004). Physiological responses of a bloom-forming 
green macroalga to short-term change in salinity, nutrients, and light 
help explain its ecological success. Estuaries, 27(2), 209–216. https://doi.
org/10.1007/BF02803378

Cole, A. J., de Nys, R., & Paul, N. A. (2014). Removing constraints on the 
biomass production of freshwater macroalgae by manipulating water 
exchange to manage nutrient flux. PLoS ONE, 9(7), e101284. https://doi.
org/10.1371/journal.pone.0101284

Elliott, D. C., Biller, P., Ross, A. B., Schmidt, A. J., & Jones, S. B. (2015). 
Hydrothermal liquefaction of biomass: Developments from batch to 
continuous process. Bioresource technology, 178, 147–156. https://doi.
org/10.1016/j.biortech.2014.09.132

Enberg, K., Jørgensen, C., Dunlop, E. S., Heino, M., & Dieckmann, U. 
(2009). Implications of fisheries-induced evolution for stock rebuild-
ing and recovery. Evolutionary Applications, 2(3), 394–414. https://doi.
org/10.1111/j.1752-4571.2009.00077.x

Entwisle, T. J., Skinner, S., Lewis, S. H., & Foard, H. J. (2007). Algae of 
Australia: Batrachospermales, Thoreales, Oedogoniales and Zygnemaceae. 
Collingwood, Vic.: CSIRO PUBLISHING/Australian Biological Resources 
Study.

http://orcid.org/0000-0001-6651-6219
http://orcid.org/0000-0001-6651-6219
https://doi.org/10.1111/jpy.12154
https://doi.org/10.1111/jpy.12154
https://doi.org/10.1371/journal.pone.0038857
https://doi.org/10.1371/journal.pone.0038857
https://doi.org/10.1016/j.jchromb.2005.12.002
https://doi.org/10.1016/j.rser.2009.10.009
https://doi.org/10.1023/A:1008077722769
https://doi.org/10.1023/A:1008077722769
https://doi.org/10.1016/S0016-2361(01)00131-4
https://doi.org/10.1016/S0016-2361(01)00131-4
https://doi.org/10.1007/BF02803378
https://doi.org/10.1007/BF02803378
https://doi.org/10.1371/journal.pone.0101284
https://doi.org/10.1371/journal.pone.0101284
https://doi.org/10.1016/j.biortech.2014.09.132
https://doi.org/10.1016/j.biortech.2014.09.132
https://doi.org/10.1111/j.1752-4571.2009.00077.x
https://doi.org/10.1111/j.1752-4571.2009.00077.x


     |  1399MARSHALL et al.

Fagerström, T., Briscoe, D. A., & Sunnucks, P. (1998). Evolution of mitotic 
cell-lineages in multicellular organisms. Trends in Ecology & Evolution, 
13(3), 117–120. https://doi.org/10.1016/S0169-5347(97)01314-1

Garland, T. Jr, & Rose, M. R. (2009). Experimental evolution: Concepts, meth-
ods and applications of selection experiments. Oakland, CA: University of 
California Press.

Gill, D. E., Chao, L., Perkins, S. L., & Wolf, J. B. (1995). Genetic mosaicism in 
plants and clonal animals. Annual Review of Ecology and Systematics, 26, 
423–444. https://doi.org/10.1146/annurev.es.26.110195.002231

Gosch, B. J., Magnusson, M., Paul, N. A., & Nys, R. (2012). Total lipid and 
fatty acid composition of seaweeds for the selection of species for oil-
based biofuel and bioproducts. GCB Bioenergy, 4(6), 919–930. https://
doi.org/10.1111/j.1757-1707.2012.01175.x

Hathwaik, L. T., Redelman, D., Samburova, V., Zielinska, B., Shinatini, D. K., 
Harper, J. F., & Cushman, J. C. (2015). Transgressive, reiterative selec-
tion by continuous buoyant density gradient centrifugation of Dunaliella 
salina results in enhanced lipid and starch content. Algal Research, 9, 
194–203. https://doi.org/10.1016/j.algal.2015.03.009

Hendry, A. P., Kinnison, M. T., Heino, M., Day, T., Smith, T. B., Fitt, G., 
& Carroll, S. P. (2011). Evolutionary principles and their practical 
application. Evolutionary Applications, 4(2), 159–183. https://doi.
org/10.1111/j.1752-4571.2010.00165.x

Jiménez-Escrig, A., Gómez-Ordóñez, E., & Rupérez, P. (2012). Brown and 
red seaweeds as potential sources of antioxidant nutraceuticals. Journal 
of Applied Phycology, 24(5), 1123–1132. https://doi.org/10.1007/
s10811-011-9742-8

Law, R. (2000). Fishing, selection, and phenotypic evolution. ICES Journal 
of Marine Science: Journal du Conseil, 57(3), 659–668. https://doi.
org/10.1006/jmsc.2000.0731

Law, W., & Salick, J. (2005). Human-induced dwarfing of Himalayan snow 
lotus, Saussurea laniceps (Asteraceae). Proceedings of the National 
Academy of Sciences of the United States of America, 102(29), 10218–
10220. https://doi.org/10.1073/pnas.0502931102

Lawton, R. J., Carl, C., de Nys, R., & Paul, N. A. (2015). Heritable variation 
in growth and biomass productivity in the clonal freshwater macroalga 
Oedogonium. Algal Research, 8, 108–114. https://doi.org/10.1016/j.
algal.2015.01.012

Lawton, R. J., de Nys, R., & Paul, N. A. (2013). Selecting reliable and ro-
bust freshwater macroalgae for biomass applications. PLoS ONE, 8(5), 
e64168. https://doi.org/10.1371/journal.pone.0064168

Lawton, R. J., de Nys, R., Skinner, S., & Paul, N. A. (2014). Isolation and iden-
tification of Oedogonium Species and strains for biomass applications. 
PLoS ONE, 9(3), e90223. https://doi.org/10.1371/journal.pone.0090223

Lawton, R. J., Paul, N. A., Marshall, D. J., & Monro, K. (2017). Limited evo-
lutionary responses to harvesting regime in the intensive production 
of algae. Journal of Applied Phycology, 29(3), 1449–1459. https://doi.
org/10.1007/s10811-016-1044-8

Li, Y.-X., Wijesekara, I., Li, Y., & Kim, S.-K. (2011). Phlorotannins as bioac-
tive agents from brown algae. Process Biochemistry, 46(12), 2219–2224. 
https://doi.org/10.1016/j.procbio.2011.09.015

Mata, L., Magnusson, M., Paul, N., & de Nys, R. (2015). The intensive land-
based production of the green seaweeds Derbesia tenuissima and Ulva 
ohnoi: Biomass and bioproducts. Journal of Applied Phycology, 26, 1–11. 
https://doi.org/10.1007/s10811-015-0561-1

Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for bio-
diesel production and other applications: A review. Renewable and 
Sustainable Energy Reviews, 14(1), 217–232. https://doi.org/10.1016/ 
j.rser.2009.07.020

Meneses, I., Santelices, B., & Sanchez, P. (1999). Growth-related intraclonal 
genetic changes in Gracilaria chilensis (Gracilariales: Rhodophyta). Marine 
Biology, 135(3), 391–397. https://doi.org/10.1007/s002270050639

Moheimani, N., & Borowitzka, M. (2006). The long-term culture of the 
coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor race-
way ponds. Journal of Applied Phycology, 18(6), 703–712. https://doi.
org/10.1007/s10811-006-9075-1

Monro, K., & Poore, A. G. B. (2009). The potential for evolutionary re-
sponses to cell-lineage selection on growth form and its plasticity in 
a red seaweed. The American Naturalist, 173, 151–163. https://doi.
org/10.1086/595758

Moreno, H. M., Jacq, C., Montero, M. P., Gόmez-Guillén, M. C., Borderías, 
A. J., & Mørkøre, T. (2016). Effect of selective breeding on collagen 
properties of Altantic salmon (Salmo salar L.). Food Chemistry, 190, 
856–863. https://doi.org/10.1016/j.foodchem.2015.06.022 https://
doi.org/10.1016/j.foodchem.2015.06.022

Neveux, N., Magnusson, M., Maschmeyer, T., de Nys, R., & Paul, N. A. 
(2014). Comparing the potential production and value of high-energy 
liquid fuels and protein from marine and freshwater macroalgae. GCB 
Bioenergy, 7, 673–689. https://doi.org/10.1111/gcbb.12171

Neveux, N., Yuen, A., Jazrawi, C., Magnusson, M., Haynes, B., Masters, 
A., & de Nys, R. (2014). Biocrude yield and productivity from the hy-
drothermal liquefaction of marine and freshwater green macroal-
gae. Bioresource technology, 155, 334–341. https://doi.org/10.1016/j.
biortech.2013.12.083

Poore, A. G. B., & Fagerström, T. (2000). Intraclonal variation in macroalgae: 
Causes and evolutionary consequences. Selection, 1–3, 123–133.

Proaktor, G., Coulson, T., & Milner-Gulland, E. J. (2007). Evolutionary re-
sponses to harvesting in ungulates. Journal of Animal Ecology, 76(4), 
669–678. https://doi.org/10.1111/j.1365-2656.2007.01244.x

Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of 
microalgae. Applied Microbiology and Biotechnology, 65(6), 635–648. 
https://doi.org/10.1007/s00253-004-1647-x

Redpath, T. D., Cooke, S. J., Arlinghaus, R., Wahl, D. H., & Philipp, D. P. (2009). 
Life-history traits and energetic status in relation to vulnerability to an-
gling in an experimentally selected teleost fish. Evolutionary Applications, 
2(3), 312–323. https://doi.org/10.1111/j.1752-4571.2009.00078.x

Renauld, S. M., Parry, D. L., Thinh, L. V., Kuo, C., Padovan, A., & Sammy, N. 
(1991). Effect of light intensity on the proximate biochemical and fatty 
acid composition of Isochrysis sp. and Nannochloropsis oculata for use in 
tropical aquaculture. Journal of Applied Phycology, 3, 43–53. https://doi.
org/10.1007/BF00003918

Reznick, D. N., & Ghalambor, C. K. (2005). Can commercial fishing cause 
evolution? Answers from guppies (Poecilia reticulata). Canadian Journal of 
Fisheries and Aquatic Sciences, 62(4), 791–801. https://doi.org/10.1139/
f05-079

Roberts, D. A., de Nys, R., & Paul, N. A. (2013). The effect of CO2 on algal 
growth in industrial waste water for bioenergy and bioremediation ap-
plications. PLoS ONE, 8(11), e81631. https://doi.org/10.1371/journal.
pone.0081631

Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., 
& Tredici, M. R. (2009). Microalgae for oil: Strain selection, induction 
of lipid synthesis and outdoor mass cultivation in a low-cost photobio-
reactor. Biotechnology and Bioengineering, 102(1), 100–112. https://doi.
org/10.1002/bit.22033

Rowbotham, J., Dyer, P., Greenwell, H., & Theodorou, M. (2012). 
Thermochemical processing of macroalgae: A late bloomer in the de-
velopment of third-generation biofuels? Biofuels, 3(4), 441–461. https://
doi.org/10.4155/bfs.12.29

Schwaegerle, K. E. (2005). Quantitative genetic analysis of plant growth: 
Biases arising from vegetative propagation. Evolution, 59, 1259–1267. 
https://doi.org/10.1111/j.0014-3820.2005.tb01776.x

Uttin, S. D. (1985). Influence of nitrogen availability on the biochem-
ical composition of three unicellular marine algae of commercial 
importance. Aquacultural Engineering, 4(3), 175–190. https://doi.
org/10.1016/0144-8409(85)90012-3

Walsh, M. R., Munch, S. B., Chiba, S., & Conover, D. O. (2006). Maladaptive 
changes in multiple traits caused by fishing: Impediments to 
population recover. Ecology Letters, 9(2), 142–148. https://doi.
org/10.1111/j.1461-0248.2005.00858.x

Whitham, T. G., & Slobodchickoff, C. N. (1981). Evolution by individuals, 
plant-herbivore interactions, and mosaics of genetic variability: The 

https://doi.org/10.1016/S0169-5347(97)01314-1
https://doi.org/10.1146/annurev.es.26.110195.002231
https://doi.org/10.1111/j.1757-1707.2012.01175.x
https://doi.org/10.1111/j.1757-1707.2012.01175.x
https://doi.org/10.1016/j.algal.2015.03.009
https://doi.org/10.1111/j.1752-4571.2010.00165.x
https://doi.org/10.1111/j.1752-4571.2010.00165.x
https://doi.org/10.1007/s10811-011-9742-8
https://doi.org/10.1007/s10811-011-9742-8
https://doi.org/10.1006/jmsc.2000.0731
https://doi.org/10.1006/jmsc.2000.0731
https://doi.org/10.1073/pnas.0502931102
https://doi.org/10.1016/j.algal.2015.01.012
https://doi.org/10.1016/j.algal.2015.01.012
https://doi.org/10.1371/journal.pone.0064168
https://doi.org/10.1371/journal.pone.0090223
https://doi.org/10.1007/s10811-016-1044-8
https://doi.org/10.1007/s10811-016-1044-8
https://doi.org/10.1016/j.procbio.2011.09.015
https://doi.org/10.1007/s10811-015-0561-1
https://doi.org/10.1016/j.rser.2009.07.020
https://doi.org/10.1016/j.rser.2009.07.020
https://doi.org/10.1007/s002270050639
https://doi.org/10.1007/s10811-006-9075-1
https://doi.org/10.1007/s10811-006-9075-1
https://doi.org/10.1086/595758
https://doi.org/10.1086/595758
https://doi.org/10.1016/j.foodchem.2015.06.022
https://doi.org/10.1016/j.foodchem.2015.06.022
https://doi.org/10.1016/j.foodchem.2015.06.022
https://doi.org/10.1111/gcbb.12171
https://doi.org/10.1016/j.biortech.2013.12.083
https://doi.org/10.1016/j.biortech.2013.12.083
https://doi.org/10.1111/j.1365-2656.2007.01244.x
https://doi.org/10.1007/s00253-004-1647-x
https://doi.org/10.1111/j.1752-4571.2009.00078.x
https://doi.org/10.1007/BF00003918
https://doi.org/10.1007/BF00003918
https://doi.org/10.1139/f05-079
https://doi.org/10.1139/f05-079
https://doi.org/10.1371/journal.pone.0081631
https://doi.org/10.1371/journal.pone.0081631
https://doi.org/10.1002/bit.22033
https://doi.org/10.1002/bit.22033
https://doi.org/10.4155/bfs.12.29
https://doi.org/10.4155/bfs.12.29
https://doi.org/10.1111/j.0014-3820.2005.tb01776.x
https://doi.org/10.1016/0144-8409(85)90012-3
https://doi.org/10.1016/0144-8409(85)90012-3
https://doi.org/10.1111/j.1461-0248.2005.00858.x
https://doi.org/10.1111/j.1461-0248.2005.00858.x


1400  |     MARSHALL et al.

adaptive significance of somatic mutations in plants. Oecologia, 49, 287–
292. https://doi.org/10.1007/BF00347587

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the sup-
porting information tab for this article. 

How to cite this article: Marshall DJ, Lawton RJ, Monro K, Paul 
NA. Biochemical evolution in response to intensive harvesting 
in algae: Evolution of quality and quantity. Evol Appl. 

2018;11:1389–1400. https://doi.org/10.1111/eva.12632

https://doi.org/10.1007/BF00347587
https://doi.org/10.1111/eva.12632

