1,161 research outputs found
Scalable N-body code for the modelling of early-type galaxies
Early-type galaxies exhibit a wealth of photometric and dynamical structures.
These signatures are fossil records of their formation and evolution processes.
In order to examine these structures in detail, we build models aimed at
reproducing the observed photometry and kinematics. The developed method is a
generalization of the one introduced by Syer and Tremaine (1996), consisting in
an N-body representation, in which the weights of the particles are changing
with time. Our code is adapted for integral-field spectroscopic data, and is
able to reproduce the photometric as well as stellar kinematic data of observed
galaxies. We apply this technique on SAURON data of early-type galaxies, and
present preliminary results on NGC 3377.Comment: 6 pages, 2 figures. Original version printed in the Proceedings of
"Science perspective for 3D spectroscopy", 2005, Eds Kissler-Patig, Walsh,
Roth, ES0, Springe
SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator
We developed a new sub-nanosecond time-resolved instrument to study the
dynamics of UV-visible luminescence under high stopping power heavy ion
irradiation. We applied our instrument, called SPORT, on a fast plastic
scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean
electronic stopping power of 2.6 MeV/\mu m. As a consequence of increasing
permanent radiation damages with increasing ion fluence, our investigations
reveal a degradation of scintillation intensity together with, thanks to the
time-resolved measurement, a decrease in the decay constant of the
scintillator. This combination indicates that luminescence degradation
processes by both dynamic and static quenching, the latter mechanism being
predominant. Under such high density excitation, the scintillation
deterioration of BC-400 is significantly enhanced compared to that observed in
previous investigations, mainly performed using light ions. The observed
non-linear behaviour implies that the dose at which luminescence starts
deteriorating is not independent on particles' stopping power, thus
illustrating that the radiation hardness of plastic scintillators can be
strongly weakened under high excitation density in heavy ion environments.Comment: 5 figures, accepted in Nucl. Instrum. Methods
3D atom probe tomography of swift heavy ion irradiated multilayers
International audienceNanometer scale layered systems are well suited to investigate atomic transport processes induced by high-energy electronic excitations in materials, through the characterization of the interface transformation. In this study, we used the atom probe technique to determine the distribution of the different elements in an (amorphous-FeTb 5 nm/hcp-Co 3 nm) multilayer before and after irradiation with Pb ions in the electronic stopping power regime. Atom probe tomography is based on reconstruction of a small volume of a sharp tip evaporated by field effect. It has unique capabilities to characterize internal interfaces and layer chemistry with sub-nanometer scale resolution in three dimensions. Depth composition profiles and 3D element mapping have been determined, evidencing for asymetric interfaces in the as-deposited sample, and very efficient Fe-Co intermixing after irradiation at the fluence ion cm. Estimation of effective atomic diffusion coefficients after irradiation suggests that mixing results from interdiffusion in a molten track across the interface in agreement with the thermal spike model
Equilibrium Disk-Bulge-Halo Models for the Milky Way and Andromeda Galaxies
We describe a new set of self-consistent, equilibrium disk galaxy models that
incorporate an exponential disk, a Hernquist model bulge, an NFW halo and a
central supermassive black hole. The models are derived from explicit
distribution functions for each component and the large number of parameters
permit detailed modeling of actual galaxies. We present techniques that use
structural and kinematic data such as radial surface brightness profiles,
rotation curves and bulge velocity dispersion profiles to find the best-fit
models for the Milky Way and M31. Through N-body realizations of these models
we explore their stability against the formation of bars. The models permit the
study of a wide range of dynamical phenomenon with a high degree of realism.Comment: 58 pages, 20 figures, submitted to the Astrophysical Journa
The counterrotating core and the black hole mass of IC1459
The E3 giant elliptical galaxy IC1459 is the prototypical galaxy with a fast
counterrotating stellar core. We obtained one HST/STIS long-slit spectrum along
the major axis of this galaxy and CTIO spectra along five position angles. We
present self-consistent three-integral axisymmetric models of the stellar
kinematics, obtained with Schwarzschild's numerical orbit superposition method.
We study the dynamics of the kinematically decoupled core (KDC) in IC1459 and
we find it consists of stars that are well-separated from the rest of the
galaxy in phase space. The stars in the KDC counterrotate in a disk on orbits
that are close to circular. We estimate that the KDC mass is ~0.5% of the total
galaxy mass or ~3*10^9 Msun. We estimate the central black hole mass M_BH of
IC1459 independently from both its stellar and its gaseous kinematics. Some
complications probably explain why we find rather discrepant BH masses with the
different methods. The stellar kinematics suggest that M_BH = (2.6 +/-
1.1)*10^9 Msun (3 sigma error). The gas kinematics suggests that M_BH ~
3.5*10^8 Msun if the gas is assumed to rotate at the circular velocity in a
thin disk. If the observed velocity dispersion of the gas is assumed to be
gravitational, then M_BH could be as high as ~1.0*10^9 Msun. These different
estimates bracket the value M_BH = (1.1 +/- 0.3)*10^9 Msun predicted by the
M_BH-sigma relation. It will be an important goal for future studies to assess
the reliability of black hole mass determinations with either technique. This
is essential if one wants to interpret the correlation between the BH mass and
other global galaxy parameters (e.g. velocity dispersion) and in particular the
scatter in these correlations (believed to be only ~0.3 dex). [Abridged]Comment: 51 pages, LaTeX with 19 PostScript figures. Revised version, with
three new figures and data tables. To appear in The Astrophysical Journal,
578, 2002 October 2
Flux pinning in (1111) iron-pnictide superconducting crystals
Local magnetic measurements are used to quantitatively characterize
heterogeneity and flux line pinning in PrFeAsO_1-y and NdFeAs(O,F)
superconducting single crystals. In spite of spatial fluctuations of the
critical current density on the macroscopic scale, it is shown that the major
contribution comes from collective pinning of vortex lines by microscopic
defects by the mean-free path fluctuation mechanism. The defect density
extracted from experiment corresponds to the dopant atom density, which means
that dopant atoms play an important role both in vortex pinning and in
quasiparticle scattering. In the studied underdoped PrFeAsO_1-y and NdFeAs(O,F)
crystals, there is a background of strong pinning, which we attribute to
spatial variations of the dopant atom density on the scale of a few dozen to
one hundred nm. These variations do not go beyond 5% - we therefore do not find
any evidence for coexistence of the superconducting and the antiferromagnetic
phase. The critical current density in sub-T fields is characterized by the
presence of a peak effect, the location of which in the (B,T)-plane is
consistent with an order-disorder transition of the vortex lattice.Comment: 12 pages, submitted to Phys Rev.
New Delhi metallo-beta-lactamase 1-producing Enterobacteriaceae: emergence and response in Europe
The European NDM-1 Survey Participants: Manuela Caniça (Departamento de Doenças Infecciosas do INSA)Acquired carbapenemases confer extensive antibiotic resistance to Enterobacteriaceae and represent a public health threat. A novel acquired carbapenemase, New Delhi metallo-beta-lactamase 1 (NDM-1), has recently been described in the United Kingdom and Sweden, mostly in patients who had received care on the Indian subcontinent. We conducted a survey among 29 European countries (the European Union Member States, Iceland and Norway) to gather information on the spread of NDM-1-producing Enterobacteriaceae in Europe, on public health responses and on available national guidance on detection, surveillance and control. A total of 77 cases were reported from 13 countries from 2008 to 2010. Klebsiella pneumoniae was the most frequently reported species with 54%. Among 55 cases with recorded travel history, 31 had previously travelled or been admitted to a hospital in India or Pakistan and five had been hospitalised in the Balkan region. Possible nosocomial acquisition accounted for 13 of 77 cases. National guidance on NDM-1 detection was available in 14 countries and on NDM-1 control in 11 countries. In conclusion, NDM-1 is spreading across Europe, where it is frequently linked to a history of healthcare abroad, but also to emerging nosocomial transmission. National guidance in response to the threat of carbapenemase-producing Enterobacteriaceae is available in approximately half of the surveyed European countries. Surveillance of carbapenemase- producing Enterobacteriaceae must be enhanced in Europe and effective control measures identified and implemented
Energy deposition by heavy ions: Additivity of kinetic and potential energy contributions in hillock formation on CaF2
The formation of nano-hillocks on CaF2 crystal surfaces by individual ion
impact has been studied using medium energy (3 and 5 MeV) highly charged ions
(Xe19+ to Xe30+) as well as swift (kinetic energies between 12 and 58 MeV)
heavy ions. For very slow highly charged ions the appearance of hillocks is
known to be linked to a threshold in potential energy while for swift heavy
ions a minimum electronic energy loss is necessary. With our results we bridge
the gap between these two extreme cases and demonstrate, that with increasing
energy deposition via electronic energy loss the potential energy threshold for
hillock production can be substantially lowered. Surprisingly, both mechanisms
of energy deposition in the target surface seem to contribute in an additive
way, as demonstrated when plotting the results in a phase diagram. We show that
the inelastic thermal spike model, originally developed to describe such
material modifications for swift heavy ions, can be extended to case where
kinetic and potential energies are deposited into the surface.Comment: 12 pages, 4 figure
Creation of multiple nanodots by single ions
In the challenging search for tools that are able to modify surfaces on the
nanometer scale, heavy ions with energies of several 10 MeV are becoming more
and more attractive. In contrast to slow ions where nuclear stopping is
important and the energy is dissipated into a large volume in the crystal, in
the high energy regime the stopping is due to electronic excitations only.
Because of the extremely local (< 1 nm) energy deposition with densities of up
to 10E19 W/cm^2, nanoscaled hillocks can be created under normal incidence.
Usually, each nanodot is due to the impact of a single ion and the dots are
randomly distributed. We demonstrate that multiple periodically spaced dots
separated by a few 10 nanometers can be created by a single ion if the sample
is irradiated under grazing angles of incidence. By varying this angle the
number of dots can be controlled.Comment: 12 pages, 6 figure
- …