1,145 research outputs found
Turning the tide of antimicrobial resistance: Europe shows the way
To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldTen years ago, European officials, experts and other stakeholders met in Copenhagen, Denmark, at the invitation of the Danish Ministry of Health and the Danish Ministry of Food, Agriculture and Fisheries. This European conference on "The Microbial Threat" due to antimicrobial resistance resulted in the publication of "Copenhagen Recommendations" calling for action to limit the emerging problem of antimicrobial-resistant microorganisms [1]. Following the conference, the European Commission prepared a comprehensive Community strategy against antimicrobial resistance, which was published in 2001 [2] and presented in Eurosurveillance [3]. Later the same year, European Union (EU) Health Ministers adopted a Council Recommendation on the prudent use of antimicrobial agents in human medicine with a series of specific measures aimed at containing the spread of antimicrobial resistance by prudent use of antimicrobial agents [4
Amorphization of ZnAl2O4 spinel under heavy ion irradiation
ZnAl2O4 spinels have been irradiated with several ions (Ne, S, Kr and Xe) at the IRRSUD beam-line of the GANIL facility, in order to determine irradiation conditions (stopping power, fluence) for amorphisation. We observed by Transmission Electron Microscopy (TEM) that with Xe ions at 92 MeV, individual ion tracks are still crystalline, whereas an amorphisation starts below a fluence of 5.1012 cm-2 up to a total amorphisation between 1x1013 and 1x1014 cm-2. The coexistence of amorphous and crystalline domains in the same pristine grain is clearly visible in the TEM images. All the crystalline domains remain close to the same orientation as the original grain. According to TEM and X-Ray Diffraction (XRD) results, the stopping power threshold for amorphisation is between 9 and 12 keV.nm-1
SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator
We developed a new sub-nanosecond time-resolved instrument to study the
dynamics of UV-visible luminescence under high stopping power heavy ion
irradiation. We applied our instrument, called SPORT, on a fast plastic
scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean
electronic stopping power of 2.6 MeV/\mu m. As a consequence of increasing
permanent radiation damages with increasing ion fluence, our investigations
reveal a degradation of scintillation intensity together with, thanks to the
time-resolved measurement, a decrease in the decay constant of the
scintillator. This combination indicates that luminescence degradation
processes by both dynamic and static quenching, the latter mechanism being
predominant. Under such high density excitation, the scintillation
deterioration of BC-400 is significantly enhanced compared to that observed in
previous investigations, mainly performed using light ions. The observed
non-linear behaviour implies that the dose at which luminescence starts
deteriorating is not independent on particles' stopping power, thus
illustrating that the radiation hardness of plastic scintillators can be
strongly weakened under high excitation density in heavy ion environments.Comment: 5 figures, accepted in Nucl. Instrum. Methods
3D atom probe tomography of swift heavy ion irradiated multilayers
International audienceNanometer scale layered systems are well suited to investigate atomic transport processes induced by high-energy electronic excitations in materials, through the characterization of the interface transformation. In this study, we used the atom probe technique to determine the distribution of the different elements in an (amorphous-FeTb 5 nm/hcp-Co 3 nm) multilayer before and after irradiation with Pb ions in the electronic stopping power regime. Atom probe tomography is based on reconstruction of a small volume of a sharp tip evaporated by field effect. It has unique capabilities to characterize internal interfaces and layer chemistry with sub-nanometer scale resolution in three dimensions. Depth composition profiles and 3D element mapping have been determined, evidencing for asymetric interfaces in the as-deposited sample, and very efficient Fe-Co intermixing after irradiation at the fluence ion cm. Estimation of effective atomic diffusion coefficients after irradiation suggests that mixing results from interdiffusion in a molten track across the interface in agreement with the thermal spike model
Structural effects in UO2 thin films irradiated with fission-energy Xe ions
Uranium dioxide thin films have been successfully grown on LSAT (Al10La3O51Sr14Ta7) substrates by reactive magnetron sputtering. Irradiation by 92 MeV 129Xe23+ ions to simulate fission damage that occurs within nuclear fuels caused microstructural and crystallographic changes. Initially flat and continuous thin films were produced by magnetron sputtering with a root mean square roughness of 0.35 nm determined by AFM. After irradiation, this roughness increased to 60–70 nm, with the films developing discrete microstructural features: small grains (∼3 μm), along with larger circular (up to 40 μm) and linear formations with non-uniform composition according to the SEM, AFM and EDX results. The irradiation caused significant restructuring of the UO2 films that was manifested in significant film-substrate mixing, observed through EDX analysis. Diffusion of Al from the substrate into the film in unirradiated samples was also observed
Structural effects in UO2 thin films irradiated with U ions
This work presents the results of a detailed structural characterisation of irradiated and unirradiated single crystal thin films of UO2. Thin films of UO2 were produced by reactive magnetron sputtering onto (0 0 1), (1 1 0) and (1 1 1) single crystal yttria-stabilised zirconia (YSZ) substrates. Half of the samples were irradiated with 110 MeV 238U31+ ions to fluences of 5 × 1010, 5 × 1011 and 5 × 1012 ions/cm2 to induce radiation damage, with the remainder kept for reference measurements. It was observed that as-produced UO2 films adopted the crystallographic orientation of their YSZ substrates. The irradiation fluences used in this study however, were not sufficient to cause any permanent change in the crystalline nature of UO2. It has been demonstrated that the effect of epitaxial re-crystallisation of the induced radiation damage can be quantified in terms of kernel average misorientation (KAM) and different crystallographic orientations of UO2 respond differently to ion irradiation
UGC 7388: a galaxy with two tidal loops
We present the results of spectroscopic and morphological studies of the
galaxy UGC7388 with the 8.1-m Gemini North telescope. Judging by its observed
characteristics, UGC7388 is a giant late-type spiral galaxy seen almost
edge-on. The main body of the galaxy is surrounded by two faint (\mu(B) ~ 24
and \mu(B) ~ 25.5) extended (~20-30 kpc) loop-like structures. A large-scale
rotation of the brighter loop about the main galaxy has been detected. We
discuss the assumption that the tidal disruption of a relatively massive
companion is observed in the case of UGC7388. A detailed study and modeling of
the observed structure of this unique galaxy can give important information
about the influence of the absorption of massive companions on the galactic
disks and about the structure of the dark halo around UGC7388.Comment: 8 pages, 5 figure
SuperMassive Black Holes in Bulges
We present spatially extended gas kinematics at parsec-scale resolution for
the nuclear regions of four nearby disk galaxies, and model them as rotation of
a gas disk in the joint potential of the stellar bulge and a putative central
black hole. The targets were selected from a larger set of long-slit spectra
obtained with the Hubble Space Telescope as part of the Survey of Nearby Nuclei
with STIS (SUNNS). They represents the 4 galaxies (of 24) that display
symmetric gas velocity curves consistent with a rotating disk. We derive the
stellar mass distribution from the STIS acquisition images adopting the stellar
mass-to-light ratio normalized so as to match ground-based velocity dispersion
measurements over a large aperture. Subsequently, we constrain the mass of a
putative black hole by matching the gas rotation curve, following two distinct
approaches. In the most general case we explore all the possible disk
orientations, alternatively we constrain the gas disk orientation from the
dust-lane morphology at similar radii. In the latter case the kinematic data
indicate the presence of a central black hole for three of the four objects,
with masses of 10^7 - 10^8 solar masses, representing up to 0.025 % of the host
bulge mass. For one object (NGC2787) the kinematic data alone provide clear
evidence for the presence of a central black hole even without external
constraints on the disk orientation. These results illustrate directly the need
to determine black-hole masses by differing methods for a large number of
objects, demonstrate that the variance in black hole/bulge mass is much larger
than previously claimed, and reinforce the recent finding that the black-hole
mass is tightly correlated with the bulge stellar velocity dispersion.Comment: 26 pages, 11 Postscript figures, accepted for publication on Ap
- …
