533 research outputs found

    The Lx-T Relation and Intracluster Gas Fractions of X-ray Clusters

    Get PDF
    We re-examine the X-ray luminosity-temperature relation using a nearly homogeneous data set of 24 clusters selected for statistically accurate temperature measurements and absence of strong cooling flows. The data exhibit a remarkably tight power-law relation between bolometric luminosity and temperature with a slope 2.88 \pm 0.15. With reasonable assumptions regarding cluster structure, we infer an upper limit on fractional variations in the intracluster gas fraction <(\delta\fgas/\fgas)^2)^1/2 \le 15%. Imaging data from the literature are employed to determine absolute values of fgas within spheres encompassing density contrast 500 and 200 with respect to the critical density. Comparing binding mass estimates based on the virial theorem (VT) and the hydrostatic, betamodel (BM), we find a temperature-dependent discrepancy in fgas between the two methods caused by sytematic variation of the outer slope parameter beta with temperature. There is evidence that cool clusters have a lower mean gas fraction that hot clusters, but it is not possible to assess the statistical significance of this effect in the present dataset. The temperature dependance of the ICM density structure, coupled with the increase of the gas fraction with T in the VT aproach, explains the steepening of the Lx-T relation. The small variation about the mean gas fraction within this majority sub-population of clusters presents an important constraint for theories of galaxy formation and supports arguments against an Einstein-deSitter universe based on the population mean gas fraction and primordial nucleosynthesis. The apparent trend of lower gas fractions and more extended atmospheres in low T systems are consistent with expectations of models incorporating the effects of galactic winds on the ICM. ABRIDGEDComment: 11 pages, 4 figures, uses mn.sty and epsf.sty, accepted for publication in MNRAS; minor modifications: discussion added on CF LX (Sec. 3.1);comparison with Allen & Fabian L-T results (Sec.3.1 & Sec.4.4); statistics precised (3.1), discussion clarified (Sec. 2.2,Sec. 4.4); slight mistake in the r-T and M-T relation calibration corrected and thus fgas in Fig.3, Fig 4, Tab 2 slightly change

    The matter distribution in z ~ 0.5 redshift clusters of galaxies. II : The link between dark and visible matter

    Get PDF
    We present an optical analysis of a sample of 11 clusters built from the EXCPRES sample of X-ray selected clusters at intermediate redshift (z ~ 0.5). With a careful selection of the background galaxies we provide the mass maps reconstructed from the weak lensing by the clusters. We compare them with the light distribution traced by the early-type galaxies selected along the red sequence for each cluster. The strong correlations between dark matter and galaxy distributions are confirmed, although some discrepancies arise, mostly for merging or perturbed clusters. The average M/L ratio of the clusters is found to be: M/L_r = 160 +/- 60 in solar units (with no evolutionary correction), in excellent agreement with similar previous studies. No strong evolutionary effects are identified even if the small sample size reduces the significance of the result. We also provide a individual analysis of each cluster in the sample with a comparison between the dark matter, the galaxies and the gas distributions. Some of the clusters are studied for the first time in the optical.Comment: 25 pages, 9 figues + 11 figures in Annex, 4 tables. Accepted for publication in A&A. 1 reference correcte

    Joint signal extraction from galaxy clusters in X-ray and SZ surveys: A matched-filter approach

    Full text link
    The hot ionized gas of the intra-cluster medium emits thermal radiation in the X-ray band and also distorts the cosmic microwave radiation through the Sunyaev-Zel'dovich (SZ) effect. Combining these two complementary sources of information through innovative techniques can therefore potentially improve the cluster detection rate when compared to using only one of the probes. Our aim is to build such a joint X-ray-SZ analysis tool, which will allow us to detect fainter or more distant clusters while maintaining high catalogue purity. We present a method based on matched multifrequency filters (MMF) for extracting cluster catalogues from SZ and X-ray surveys. We first designed an X-ray matched-filter method, analogous to the classical MMF developed for SZ observations. Then, we built our joint X-ray-SZ algorithm by combining our X-ray matched filter with the classical SZ-MMF, for which we used the physical relation between SZ and X-ray observations. We show that the proposed X-ray matched filter provides correct photometry results, and that the joint matched filter also provides correct photometry when the FX/Y500F_{\rm X}/Y_{500} relation of the clusters is known. Moreover, the proposed joint algorithm provides a better signal-to-noise ratio than single-map extractions, which improves the detection rate even if we do not exactly know the FX/Y500F_{\rm X}/Y_{500} relation. The proposed methods were tested using data from the ROSAT all-sky survey and from the Planck survey.Comment: 22 pages (before appendices), 19 figures, 3 tables, 5 appendices. Accepted for publication in A&

    Planck 2013 results. XXXI. Consistency of the Planck data

    Get PDF
    The Planck design and scanning strategy provide many levels of redundancy that can be exploited to provide tests of internal consistency. One of the most important is the comparison of the 70 GHz (amplifier) and 100 GHz (bolometer) channels. Based on different instrument technologies, with feeds located differently in the focal plane, analysed independently by different teams using different software, and near the minimum of diffuse foreground emission, these channels are in effect two different experiments. The 143 GHz channel has the lowest noise level on Planck, and is near the minimum of unresolved foreground emission. In this paper, we analyse the level of consistency achieved in the 2013 Planck data. We concentrate on comparisons between the 70, 100, and 143 GHz channel maps and power spectra, particularly over the angular scales of the first and second acoustic peaks, on maps masked for diffuse Galactic emission and for strong unresolved sources. Difference maps covering angular scales from 8° to 15′ are consistent with noise, and show no evidence of cosmic microwave background structure. Including small but important corrections for unresolved-source residuals, we demonstrate agreement (measured by deviation of the ratio from unity) between 70 and 100 GHz power spectra averaged over 70 ≤ ℓ ≤ 390 at the 0.8% level, and agreement between 143 and 100 GHz power spectra of 0.4% over the same ℓ range. These values are within and consistent with the overall uncertainties in calibration given in the Planck 2013 results. We also present results based on the 2013 likelihood analysis showing consistency at the 0.35% between the 100, 143, and 217 GHz power spectra. We analyse calibration procedures and beams to determine what fraction of these differences can be accounted for by known approximations or systematicerrors that could be controlled even better in the future, reducing uncertainties still further. Several possible small improvements are described. Subsequent analysis of the beams quantifies the importance of asymmetry in the near sidelobes, which was not fully accounted for initially, affecting the 70/100 ratio. Correcting for this, the 70, 100, and 143 GHz power spectra agree to 0.4% over the first two acoustic peaks. The likelihood analysis that produced the 2013 cosmological parameters incorporated uncertainties larger than this. We show explicitly that correction of the missing near sidelobe power in the HFI channels would result in shifts in the posterior distributions of parameters of less than 0.3σ except for As, the amplitude of the primordial curvature perturbations at 0.05 Mpc-1, which changes by about 1σ. We extend these comparisons to include the sky maps from the complete nine-year mission of the Wilkinson Microwave Anisotropy Probe (WMAP), and find a roughly 2% difference between the Planck and WMAP power spectra in the region of the first acoustic peak

    The stellar mass function of galaxies in Planck-selected clusters at 0.5 < z < 0.7: new constraints on the timescale and location of satellite quenching

    Get PDF
    We study the abundance of star-forming and quiescent galaxies in a sample of 21 massive clusters at 0.5<z<0.7, detected with the Planck satellite. We measure the cluster galaxy stellar mass function (SMF), which is a fundamental observable to study and constrain the formation and evolution of galaxies. Our measurements are based on homogeneous and deep multi-band photometry spanning u- to the Ks-band for each cluster and are supported by spectroscopic data from different programs. The galaxy population is separated between quiescent and star-forming galaxies based on their rest-frame U-V and V-J colours. The SMF is compared to that of field galaxies at the same redshifts, using data from the COSMOS/UltraVISTA survey. We find that the shape of the SMF of star-forming galaxies does not depend on environment, while the SMF of quiescent galaxies has a significantly steeper low-mass slope in the clusters compared to the field. We estimate the environmental quenching efficiency (f_EQ), i.e. the probability for a galaxy that would normally be star forming in the field, to be quenched due to its environment. The f_EQ shows no stellar-mass dependence in any environment, but it increases from 40% in the cluster outskirts to ~90% in the cluster centres. The radial signature of f_EQ provides constraints on where the dominant quenching mechanism operates in these clusters and on what timescale. Exploring these using a simple model based on galaxy orbits obtained from an N-body simulation, we find a clear degeneracy between both parameters. For example, the quenching process may either be triggered on a long (~3 Gyr) time scale at large radii (r~8R_500), or happen well within 1 Gyr at r<R_500. The radius where quenching is triggered is at least r_quench> 0.67R_500 (95%CL). The ICM density at this location suggests that ram-pressure stripping of the cold gas is a likely cause of quenching. [Abridged]Comment: 16 pages, 12 figures, accepted for publication in A&

    Planck intermediate results XXV. The Andromeda galaxy as seen by Planck

    Get PDF
    The Andromeda galaxy (M 31) is one of a few galaxies that has sufficient angular size on the sky to be resolved by the Planck satellite. Planck has detected M 31 in all of its frequency bands, and has mapped out the dust emission with the High Frequency Instrument, clearly resolving multiple spiral arms and sub-features. We examine the morphology of this long-wavelength dust emission as seen by Planck, including a study of its outermost spiral arms, and investigate the dust heating mechanism across M 31. We find that dust dominating the longer wavelength emission (greater than or similar to 0.3 mm) is heated by the diffuse stellar population (as traced by 3.6 mu m emission), with the dust dominating the shorter wavelength emission heated by a mix of the old stellar population and star-forming regions (as traced by 24 mu m emission). We also fit spectral energy distributions for individual 5\u27 pixels and quantify the dust properties across the galaxy, taking into account these different heating mechanisms, finding that there is a linear decrease in temperature with galactocentric distance for dust heated by the old stellar population, as would be expected, with temperatures ranging from around 22 K in the nucleus to 14 K outside of the 10 kpc ring. Finally, we measure the integrated spectrum of the whole galaxy, which we find to be well-fitted with a global dust temperature of (18.2 +/- 1.0) K with a spectral index of 1.62 +/- 0.11 (assuming a single modified blackbody), and a significant amount of free-free emission at intermediate frequencies of 20-60 GHz, which corresponds to a star formation rate of around 0.12 M-circle dot yr(-1). We find a 2.3 sigma detection of the presence of spinning dust emission, with a 30 GHz amplitude of 0.7 +/- 0.3 Jy, which is in line with expectations from our Galaxy
    • …
    corecore