28 research outputs found

    Estrogen switches pure mucinous breast cancer to invasive lobular carcinoma with mucinous features

    Get PDF
    Mucinous breast cancer (MBC) is mainly a disease of postmenopausal women. Pure MBC is rare and augurs a good prognosis. In contrast, MBC mixed with other histological subtypes of invasive disease loses the more favorable prognosis. Because of the relative rarity of pure MBC, little is known about its cell and tumor biology and relationship to invasive disease of other subtypes. We have now developed a human breast cancer cell line called BCK4, in which we can control the behavior of MBC. BCK4 cells were derived from a patient whose poorly differentiated primary tumor was treated with chemotherapy, radiation and tamoxifen. Malignant cells from a recurrent pleural effusion were xenografted in mammary glands of a nude mouse. Cells from the solid tumor xenograft were propagated in culture to generate the BCK4 cell line. Multiple marker and chromosome analyses demonstrate that BCK4 cells are human, near diploid and luminal, expressing functional estrogen, androgen, and progesterone receptors. When xenografted back into immunocompromised cycling mice, BCK4 cells grow into small pure MBC. However, if mice are supplemented with continuous estradiol, tumors switch to invasive lobular carcinoma (ILC) with mucinous features (mixed MBC), and growth is markedly accelerated. Tamoxifen prevents the expansion of this more invasive component. The unexpected ability of estrogens to convert pure MBC into mixed MBC with ILC may explain the rarity of the pure disease in premenopausal women. These studies show that MBC can be derived from lobular precursors and that BCK4 cells are new, unique models to study the phenotypic plasticity, hormonal regulation, optimal therapeutic interventions, and metastatic patterns of MBC

    DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination. Gynecologic Oncology

    No full text
    Objectives. Cell lines derived from human ovarian and endometrial cancers, and their immortalized nonmalignant counterparts, are critical tools to investigate and characterize molecular mechanisms underlying gynecologic tumorigenesis, and facilitate development of novel therapeutics. To determine the extent of misidentification, contamination and redundancy, with evident consequences for the validity of research based upon these models, we undertook a systematic analysis and cataloging of endometrial and ovarian cell lines. Methods. Profiling of cell lines by analysis of DNA microsatellite short tandem repeats (STR), p53 nucleotide polymorphisms and microsatellite instability was performed. Results. Fifty-one ovarian cancer lines were profiled with ten found to be redundant and five (A2008, OV2008, C13, SK-OV-4 and SK-OV-6) identified as cervical cancer cells. Ten endometrial cell lines were analyzed, with RL-92, HEC-1A, HEC-1B, HEC-50, KLE, and AN3CA all exhibiting unique, uncontaminated STR profiles. Multiple variants of Ishikawa and ECC-1 endometrial cancer cell lines were genotyped and analyzed by sequencing of mutations in the p53 gene. The profile of ECC-1 cells did not match the EnCa-101 tumor, from which it was reportedly derived, and all ECC-1 isolates were genotyped as Ishikawa cells, MCF-7 breast cancer cells, or a combination thereof. Two normal, immortalized endometrial epithelial cell lines, HES cells and the hTERT-EEC line, were identified as HeLa cervical carcinoma and MCF-7 breast cancer cells, respectively. Conclusions. Results demonstrate significant misidentification, duplication, and loss of integrity of endometrial and ovarian cancer cell lines. Authentication by STR DNA profiling is a simple and economical method to verify and validate studies undertaken with these models

    Methods for Extracting and Characterizing RNA from Urine: for downstream PCR and RNAseq Analysis

    No full text
    Readily accessible samples such as urine or blood are seemingly ideal for differentiating and stratifying patients, however, it has proven a daunting task to identify reliable biomarkers in such samples. Noncoding RNA holds great promise as a source of biomarkers distinguishing physiologic wellbeing or illness

    A phase II trial of brivanib in recurrent or persistent endometrial cancer: An NRG oncology/gynecologic oncology group study

    Get PDF
    PURPOSE\ud \ud Brivanib, an oral, multi-targeted tyrosine kinase inhibitor with activity against vascular endothelial growth factor (VEGF) and fibroblast growth factor receptor (FGFR) was investigated as a single agent in a phase II trial to assess the activity and tolerability in recurrent or persistent endometrial cancer (EMC).\ud \ud PATIENTS AND METHODS\ud \ud Eligible patients had persistent or recurrent EMC after receiving one to two prior cytotoxic regimens, measurable disease, and performance status of ≤2. Treatment consisted of brivanib 800 mg orally every day until disease progression or prohibitive toxicity. Primary endpoints were progression-free survival (PFS) at six months and objective tumor response. Expression of multiple angiogenic proteins and FGFR2 mutation status was assessed.\ud \ud RESULTS\ud \ud Forty-five patients were enrolled. Forty-three patients were eligible and evaluable. Median age was 64 years. Twenty-four patients (55.8%) received prior radiation. Median number of cycles was two (range 1-24). No GI perforations but one rectal fistula were seen. Nine patients had grade 3 hypertension, with one experiencing grade 4 confusion. Eight patients (18.6%; 90% CI 9.6%-31.7%) had responses (one CR and seven PRs), and 13 patients (30.2%; 90% CI 18.9%-43.9%) were PFS at six months. Median PFS and overall survival (OS) were 3.3 and 10.7 months, respectively. When modeled jointly, VEGF and angiopoietin-2 expression may diametrically predict PFS. Estrogen receptor-α (ER) expression was positively correlated with OS.\ud \ud CONCLUSION\ud \ud Brivanib is reasonably well tolerated and worthy of further investigation based on PFS at six months in recurrent or persistent EMC
    corecore