19 research outputs found

    Slaughter weight rather than sex affects carcass cuts and tissue composition of Bisaro pigs

    Get PDF
    Carcass cuts and tissue composition were assessed in Bisaro pigs (n=64) from two sexes (31 gilts and 33 entire males) reared until three target slaughter body-weights (BW) means: 17 kg, 32 kg, and 79 kg. Dressing percentage and backfat thickness increased whereas carcass shrinkage decreased with increasing BW. Slaughter weight affected most of the carcass cut proportions, except shoulder and thoracic regions. Bone proportion decreased linearly with increasing slaughter BW, while intermuscular and subcutaneous adipose tissue depots increased concomitantly. Slaughter weight increased the subcutaneous adipose tissue proportion but this impaired intramuscular and intermuscular adipose tissues in the loin primal. The sex of the pigs minimally affected the carcass composition, as only the belly weight and the subcutaneous adipose tissue proportions were greater in gilts than in entire males. Light pigs regardless of sex are recommended to balance the trade-offs between carcass cuts and their non-edible compositional outcomes.Work included in the Portuguese PRODER research Project BISOPORC – Pork extensive production of Bísara breed, in two alternative systems: fattening on concentrate vs chesnut, Project PRODER SI I&DT Medida 4.1 “Cooperação para a Inovação”. The authors are grateful to Laboratory of Carcass and Meat Quality of Agriculture School of Polytechnic Institute of Bragança ‘Cantinho do Alfredo’. The authors are members of the MARCARNE network, funded by CYTED (ref. 116RT0503).info:eu-repo/semantics/publishedVersio

    In Silico Design of Robust Bolalipid Membranes

    No full text
    The robustness of microorganisms used in industrial fermentations is essential for the efficiency and yield of the production process. A viable tool to increase the robustness is through engineering of the cell membrane and especially by incorporating lipids from species that survive under harsh conditions. Bolalipids are tetraether lipids found in Archaea bacteria, conferring stability to these bacteria by spanning across the cytoplasmic membrane. Here we report on in silico experiments to characterize and design optimal bolalipid membranes in terms of robustness. We use coarse-grained molecular dynamics simulations to study the structure, dynamics, and stability of membranes composed of model bolalipids, consisting of two dipalmitoylphosphatidylcholine (DPPC) lipids covalently linked together at either one or both tail ends. We find that bolalipid membranes differ substantially from a normal lipid membrane, with an increase in thickness and tail order, an increase in the gel-to-liquid crystalline phase transition temperature, and a decrease in diffusivity of the lipids. By changing the flexibility of the linker between the lipid tails, we furthermore show how the membrane properties can be controlled. A stiffer linker increases the ratio between spanning and looping conformations, rendering the membrane more rigid. Our study may help in designing artificial membranes, with tunable properties, able to function under extreme conditions. As an example, we show that incorporation of bolalipids makes the membrane more tolerant toward butanol.

    Molecular Dynamics of Mycolic Acid Monolayers

    No full text
    Mycobacterium tuberculosis, the organism responsible for TB infection in humans, is inherently resilient against host defences and anti-TB drugs. This persistence is attributed partly to the presence of lipids, such as mycolic acids (MAs), which make the cell wall impermeable. To study the conformational dynamics of MAs, we present a coarse-grained model for a representative α-MA (AMA) from Mycobacterium tuberculosisusing the MARTINI force field. The model is used to simulate monolayers of different sizes; a small monolayer consisting of 220 MAs and a large monolayer consisting of 1972 MAs. The model could replicate key features of experimental monolayers such as phase changes and the collapse point. By studying the conformation of MAs in the simulated monolayers, it was found that AMA did not fold into the W-conformation at large surface areas but was only folded at the head group to give a wide U-shape. On monolayer compression, the MA chains came closer together, into a narrower U-shape, and an ordered monolayer was formed before it collapsed.</p

    In Silico Design of Robust Bolalipid Membranes

    Get PDF
    The robustness of microorganisms used in industrial fermentations is essential for the efficiency and yield of the production process. A viable tool to increase the robustness is through engineering of the cell membrane and especially by incorporating lipids from species that survive under harsh conditions. Bolalipids are tetraether lipids found in Archaea bacteria, conferring stability to these bacteria by spanning across the cytoplasmic membrane. Here we report on in silico experiments to characterize and design optimal bolalipid membranes in terms of robustness. We use coarse-grained molecular dynamics simulations to study the structure, dynamics, and stability of membranes composed of model bolalipids, consisting of two dipalmitoylphosphatidylcholine (DPPC) lipids covalently linked together at either one or both tail ends. We find that bolalipid membranes differ substantially from a normal lipid membrane, with an increase in thickness and tail order, an increase in the gel-to-liquid crystalline phase transition temperature, and a decrease in diffusivity of the lipids. By changing the flexibility of the linker between the lipid tails, we furthermore show how the membrane properties can be controlled, A stiffer linker increases the ratio between spanning and looping conformations, rendering the membrane more rigid. Our study may help in designing artificial membranes, with tunable properties, able to function under extreme conditions. As an example, we show that incorporation of bolalipids makes the membrane more tolerant toward butanol

    In Silico Design of Robust Bolalipid Membranes

    No full text
    The robustness of microorganisms used in industrial fermentations is essential for the efficiency and yield of the production process. A viable tool to increase the robustness is through engineering of the cell membrane and especially by incorporating lipids from species that survive under harsh conditions. Bolalipids are tetraether lipids found in Archaea bacteria, conferring stability to these bacteria by spanning across the cytoplasmic membrane. Here we report on in silico experiments to characterize and design optimal bolalipid membranes in terms of robustness. We use coarse-grained molecular dynamics simulations to study the structure, dynamics, and stability of membranes composed of model bolalipids, consisting of two dipalmitoylphosphatidylcholine (DPPC) lipids covalently linked together at either one or both tail ends. We find that bolalipid membranes differ substantially from a normal lipid membrane, with an increase in thickness and tail order, an increase in the gel-to-liquid crystalline phase transition temperature, and a decrease in diffusivity of the lipids. By changing the flexibility of the linker between the lipid tails, we furthermore show how the membrane properties can be controlled. A stiffer linker increases the ratio between spanning and looping conformations, rendering the membrane more rigid. Our study may help in designing artificial membranes, with tunable properties, able to function under extreme conditions. As an example, we show that incorporation of bolalipids makes the membrane more tolerant toward butanol

    Immobilization of the Plug Domain Inside the SecY Channel Allows Unrestricted Protein Translocation

    Get PDF
    The SecYEG complex forms a protein-conducting channel in the inner membrane of Escherichia coli to support the translocation of secretory proteins in their unfolded state. The SecY channel is closed at the periplasmic face of the membrane by a small re-entrance loop that connects transmembrane segment 1 with 2b. This helical domain 2a is termed the plug domain. By the introduction of pairs of cysteines and crosslinkers, the plug domain was immobilized inside the channel and connected to transmembrane segment 10. Translocation was inhibited to various degrees depending on the position and crosslinker spacer length. With one of the crosslinked mutants translocation occurred unrestricted. Biochemical characterization of this mutant as well as molecular dynamics simulations suggest that only a limited movement of the plug domain suffices for translocation.

    Recurrent miscarriage in a novel translocation 7:9 carriers with no infertility

    Get PDF
    A balanced translocation between the short arm of chromosome 7 and the long arm ofchromosome 9 was observed in a pedigree of three carriers (proband, his daugtherand first cousin). In this study, the proband and first cousin have no infertilityproblems, they had phenotypically normal progeny but shows recurrent miscarriage.Cytogenetic analysis of metaphase chromosomes was performed, the karyotype of theproband carrier was determined as 46, XY, t(7;9)(7pter 7p12;9qter9q34::7p12 7qter). The study of this family is important because to ourknowledge there have not previous report with the same translocation, and it has beentransmitted through generations. In conclusion, the most striking finding was the nonexistence of unbalanced offspring after detecting a structural chromosomeabnormality in the parents. To understand the cytogenetic and clinical significance ofthis case the authors discuss the possible causes of recurrent miscarriage. Detection ofchromosomal abnormalities in spontaneous abortion materials is very important toclarify the causes of loss of pregnancy. The evaluation of the incidence of segregationproducts of balanced translocation in sperm nuclei of carriers can be evaluated byFISH, using the proper combination of probes, and will give patients more accurategenetic advice and helps to personalize the reproductive risk in male carriers ofbalanced translocation 7:9.Fil: Siewert, Susana Elfrida. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Departamento de Bioquímica y Ciencias Biológicas. Area de Biología Molecular; ArgentinaFil: Della Vedova, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; ArgentinaFil: Coll, Silvana. Hospital Humberto Notti; ArgentinaFil: Trigo, Monica. Centro Medico Mitre; ArgentinaFil: Marsa, Silvana. Genes; Argentin

    Variation in Body Composition Determines Long-Term Blood Pressure Changes in Pre-Hypertension The MONICA/KORA (Monitoring Trends and Determinants on Cardiovascular Diseases/Cooperative Research in the Region of Augsburg) Cohort Study

    Get PDF
    Objectives We studied the relationship between changes in body composition and changes in blood pressure levels. Background The mechanisms underlying the frequently observed progression from pre-hypertension to hypertension are poorly understood. Methods We examined 1,145 subjects from a population-based survey at baseline in 1994/1995 and at follow-up in 2004/2005. First, we studied individuals pre-hypertensive at baseline who, during 10 years of follow-up, either had normalized blood pressure (PreNorm, n = 48), persistently had pre-hypertension (PrePre, n = 134), or showed progression to hypertension (PreHyp, n = 183). In parallel, we studied predictors for changes in blood pressure category in individuals hypertensive at baseline (n = 429). Results After 10 years, the PreHyp group was characterized by a marked increase in body weight (+5.71% [95% confidence interval (CI): 4.60% to 6.83%]) that was largely the result of an increase in fat mass (+17.8% [95% CI: 14.5% to 21.0%]). In the PrePre group, both the increases in body weight (+1.95% [95% CI: 0.68% to 3.22%]) and fat mass (+8.09% [95% CI: 4.42% to 11.7%]) were significantly less pronounced than in the PreHyp group (p < 0.001 for both). The PreNorm group showed no significant change in body weight (-1.55% [95% CI: -3.70% to 0.61%]) and fat mass (+0.20% [95% CI: -6.13% to 6.52%], p < 0.05 for both, vs. the PrePre group). Conclusions After 10 years of follow-up, hypertension developed in 50.1% of individuals with pre-hypertension and only 6.76% went from hypertensive to pre-hypertensive blood pressure levels. An increase in body weight and fat mass was a risk factor for the development of sustained hypertension, whereas a decrease was predictive of a decrease in blood pressure. (J Am Coll Cardiol 2010; 56: 65-76) (C) 2010 by the American College of Cardiology FoundationGerman Research Foundation (Deutsche Forschungsgemeinschaft [DFG][DFG Schu 672/12-1]Federal Ministry of Education and Research (Bundesministerium fur Bildung und Forschung [BMBF][NGFN2 [FKZ-01GS0418]Competence Network of Heart Failure[BMBF-01GI0205]University of Lubeck Medical School[A39-2005]Helmholtz Zentrum MunchenFederal Ministry of Education and ResearchBavarian Ministry of Financ
    corecore